正方形

✍ dations ◷ 2025-04-02 17:43:16 #正方形
在平面几何学中,正方形是四边相等且四个角是直角的四边形。正方形是正多边形的一种:正四边形。四个顶点为ABCD的正方形可以记为 ◻ {displaystyle square } ABCD。正方形是二维的超方形,也是二维的正轴形。正方形是正四边形,是特殊的矩形、对称四边形、平行四边形。其四个内角为直角。除了四边四角相等的性质,正方形还有以下性质:正方形的周长是它的边长的4倍。如果边长为a,那么周长 P = 4 a {displaystyle P=4a} 。正方形的面积是其边长的平方。如果边长为a,那么面积 A = a 2 {displaystyle A=a^{2}} 。如果我们知道正方形的对角线长d,那么我们也可以之计算面积 A = d 2 2 {displaystyle A={frac {d^{2}}{2}}} ,如果正方形边心距为r,外接圆半径是R,那么 A = 4 r 2 {displaystyle A=4r^{2}} 。, A = 2 R 2 {displaystyle A=2R^{2}} 。若正方形的边长为整数,其面积就是一个完全平方数。在周长固定时,正方形的面积一定大于其他非正方形的四边形的面积。正方形是一种高度对称的平面图形,它关于两条对角线的交点中心对称(这个点又被称作正方形的中心)。它的对称轴有四条,分别是对边中点的连线以及两条对角线。保持正方形不变的变换有8种,包括全等变换,以正方形中心为中心、角度为90度、180度和270度的旋转,以及关于四条对称轴的反射。这八个变换组成了一个群,是二面体群中的一个,记作D4。公元前五世纪时,毕达哥拉斯学派最早证明了正方形的对角线长度与边长长度的比例: 2 {displaystyle {sqrt {2}}} ,是无法表示为两个自然数的公比的。用同一种多边形不重叠地将平面“铺满”,称为平面的正镶嵌图。正方形是能够组成平面的正镶嵌图的三种正多边形之一(另外两种分别是正三角形和正六边形)。

相关

  • 肌肉肌肉(拉丁语:Musculus)是一种能收缩的动物组织,属于软组织,由胚胎的中胚层发育而来。肌肉细胞有收缩纤维,会在细胞间移动,并改变细胞的大小。肌肉分为骨骼肌、心肌和平滑肌三种,其功
  • 语法语法(英语:Grammar),也称文法,在语言学中指任意自然语言中句子、短语以及词等语法单位的语法结构与语法意义的规律,本质上即音义结合体之间的结合规律。对于语法的研究称为语法学
  • 阿米巴变形虫变形虫,拉丁文为Amoeba,中文音译为阿米巴,所以也叫做阿米巴原虫、阿米巴变形虫或阿米巴虫或称食脑虫(透过感染鼻腔而进入脑部感染的死亡率高达九成)。是一种单细胞原生动物,仅由一
  • 种加词种加词(英文:specific epithet),又称种小名,指双名法中物种名的第二部分,另一部分为属名。在植物学名命名法中,“种名”指的是物种的完整学名,而在动物学名命名法中,“种名”既可以指
  • 可燃冰甲烷气水包合物(Methane ice),也称作甲烷水合物、甲烷冰、天然气水合物或可燃冰,为固体形态的水于晶格(水合物)中包含大量的甲烷。最初人们认为只有在太阳系外围那些低温、常出现
  • 中华民国国家标准中华民国国家标准(英语:National Standards of the Republic of China,缩写CNS)是中华民国实施的国家标准,旧名中国国家标准(英语:Chinese National Standards,缩写CNS),1935年由经济
  • 拳击拳击(英语:boxing;日语:拳闘、ボクシング),别名西洋拳,是一项两位选手使用拳头并佩戴拳击手套进行攻击与防御的体育运动,具有悠久的历史。拳击和射箭都是人类古时的生存技巧,原始人用
  • 漫长的历史法国历史开始于人类第一次踏足这片后来被称为法兰西的土地。从旧石器时代和新石器时代起,就陆续有人定居于此。到了青铜器时代和铁器时代,凯尔特人又源源不断地涌入。后来,公元
  • 彩虹彩虹,又称天弓(客家话)、天虹、绛等,简称虹,是气象中的一种光学现象,当太阳光照射到半空中的水滴,光线被折射及反射,在天空上形成拱形的七彩光谱,由外圈至内圈呈 红、 橙、 黄、 
  • 评剧评剧发源于中国唐山一带,特点是念白和唱词口语化,非常容易听懂,因此很受观众的欢迎。1910年代,成兆才将说唱曲艺艺术莲花落结合蹦蹦戏,并吸收河北梆子、京剧的一些表演方式和音乐