泽尔尼克多项式

✍ dations ◷ 2025-11-24 02:09:58 #正交多项式,物理光学,荷兰发明


泽尔尼克多项式是一个以1953年获诺贝尔物理学奖荷兰物理学家弗里茨·泽尔尼克命名的正交多项式,分为奇、偶两类

奇多项式:

偶多项式


其中 n m {\displaystyle n\geq m} -为偶数则


如果-为奇数,则

泽尔尼克多项式也可以表示为超几何函数


Noll 用一个J数字表示 :如下表

由于

其中 k j {\displaystyle k_{j}} 如果满足 m = 0 {\displaystyle m=0} ,如果 m 0 {\displaystyle m\neq 0} .

其中 d 2 r = ρ d ρ d φ {\displaystyle d^{2}r=\rho \,d\rho \,d\varphi } 为 雅可比矩阵

n m {\displaystyle n-m} n m {\displaystyle n'-m'} 都是偶数.


相关

  • 冠状动脉疾病冠状动脉疾病(英语:coronary artery disease, CAD)又称为缺血性心脏病或简称冠心病(英语:ischemic heart disease, IHD)、冠状动脉粥状硬化心脏病、冠状动脉粥状硬化心血管疾病(英
  • 子产法家系列条目战国:李悝、吴起、慎到、申不害、   商鞅、李斯、韩非子产(?-前522年),姬姓,国氏,名侨,字子产,又字子美,谥成,又称公孙侨、公孙成子、东里子产、国子、国侨、郑乔,是春秋
  • 梭温梭温(缅甸语:စိုးဝင်း,缅甸语委转写:Soe Win;1947年6月14日-2007年10月12日),缅甸前总理,自2004年10月19日起担任,由军人政府最高领导人丹瑞委任,据报导,他与丹瑞关系密切。梭温
  • 坚尾龙类Avipoda Novas, 1992坚尾龙类(学名:Tetanurae)是个演化支,包含大部分的兽脚亚目恐龙(也包含恐龙的后代鸟类)。坚尾龙类首次出现于侏罗纪早期或中期。许多著名的恐龙属于坚尾龙类,包
  • 藜斋坐标:29°39′46.88″N 121°41′29.79″E / 29.6630222°N 121.6916083°E / 29.6630222; 121.6916083沙耆故居又名藜斋,是浙江省宁波市境内一处人物故居,位于鄞州区塘溪镇沙
  • 依特米龙依特米龙属(学名:Itemirus)是兽脚亚目恐龙的一属,生存于上白垩纪的土仑阶。目前只有一个小型、遭到损坏的头壳化石(编号PIN 327/699),是在1958年发现于乌兹别克斯坦的Dzharakuduk,属
  • 德克萨斯得克萨斯州(英语:State of Texas,/ˈtɛksəs/,当地 /ˈtɛksɪz/),简称得州或德州,是全美国土地面积和人口的第二大州(面积仅次于阿拉斯加州;人口次于加利福尼亚州)。得克萨斯州位于
  • 曹操高陵坐标:36°14′27″N 114°15′35″E / 36.240760050508°N 114.25961494446°E / 36.240760050508; 114.25961494446曹操高陵,又称安阳高陵、魏高陵、西高穴2号墓,是东汉末年魏
  • 亚美尼亚历法亚美尼亚历法是亚美尼亚使用的传统历法,来自于古埃及的历法系统,是一种阳历,将一年分为12个月,每月30天,最后再加5天,不属于任何一个月,因此每年有365天,但不设置闰年,所以和公历逐渐
  • 萨赫蛋糕萨赫蛋糕是一种巧克力蛋糕,1832年由Franz Sacher在奥地利维也纳发明。蛋糕由两层甜巧克力和两层巧克力中间的杏子酱构成,蛋糕上面有巧克力片。