ζ函数

✍ dations ◷ 2025-11-06 01:22:49 #ζ函数
黎曼ζ函数 .mw-parser-output .serif{font-family:Times,serif}ζ(s) 的定义如下: 设一复数 s 使得 Re(s) > 1,则定义:它亦可以用积分定义:在区域 {s : Re(s) > 1} 上,此无穷级数收敛并为一全纯函数。欧拉在1740年考虑过 s 为正整数的情况,后来切比雪夫拓展到 s > 1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓,把定义域扩展到几乎整个复数域上的全纯函数 ζ(s)。这也是黎曼猜想所研究的函数。虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齐夫定律和齐夫-曼德尔布罗特定律(英语:Zipf–Mandelbrot law))、物理,以及调音的数学理论中。ζ函数最早出现于1350年左右,当时的尼克尔·奥里斯姆发现了调和级数发散,即 ζ ( 1 ) = 1 + 1 2 + 1 3 + 1 4 + . . . → ∞ {displaystyle zeta (1)=1+{frac {1}{2}}+{frac {1}{3}}+{frac {1}{4}}+...to infty }之后的一次进展来自莱昂哈德·欧拉,他给出了调和级数呈对数发散。∑ y < n ≤ x f ( n ) = ∫ y x f ( t ) d t + ∫ y x ( t − ⌊ t ⌋ ) f ′ ( t ) d t + f ( x ) ( ⌊ x ⌋ − x ) − f ( y ) ( ⌊ y ⌋ − y ) {displaystyle sum _{y<nleq x}f(n)=int _{y}^{x}f(t),mathrm {d} t+int _{y}^{x}(t-leftlfloor trightrfloor )f'(t),mathrm {d} t+f(x)(leftlfloor xrightrfloor -x)-f(y)(leftlfloor yrightrfloor -y)} ∑ n ≤ x 1 n = 1 + ∫ 1 x 1 t d t − ∫ 1 x ( t − ⌊ t ⌋ ) t 2 d t + ⌊ x ⌋ − x x = 1 + ln ⁡ x − ∫ 1 x ( t − ⌊ t ⌋ ) t 2 d t + O ( 1 x ) = 1 + ln ⁡ x − ∫ 1 ∞ ( t − ⌊ t ⌋ ) t 2 d t + ∫ x ∞ ( t − ⌊ t ⌋ ) t 2 d t + O ( 1 x ) = ln ⁡ x + 1 − ∫ 1 ∞ ( t − ⌊ t ⌋ ) t 2 d t + ∫ x ∞ { t } t 2 d t + O ( 1 x ) {displaystyle {begin{aligned}sum _{nleq x}{frac {1}{n}}&=1+int _{1}^{x}{frac {1}{t}},mathrm {d} t-int _{1}^{x}{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+{frac {leftlfloor xrightrfloor -x}{x}}\&=1+ln x-int _{1}^{x}{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+mathrm {O} left({frac {1}{x}}right)\&=1+ln x-int _{1}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+int _{x}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+mathrm {O} left({frac {1}{x}}right)\&=ln x+1-int _{1}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+int _{x}^{infty }{frac {left{tright}}{t^{2}}},mathrm {d} t+mathrm {O} left({frac {1}{x}}right)\end{aligned}}} 注意到其中的 1 − ∫ 1 ∞ ( t − ⌊ t ⌋ ) t 2 d t {displaystyle 1-int _{1}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t} 是一个常数。实际上,这就是欧拉-马斯刻若尼常数γ 再考虑剩下的一个积分,也就是 ∫ x ∞ { t } t 2 d t {displaystyle int _{x}^{infty }{frac {left{tright}}{t^{2}}},mathrm {d} t} 由于被积项非负,又有 { t } ≤ 1 {displaystyle left{tright}leq 1} ,于是 ∫ x ∞ { t } t 2 d t ≤ ∫ x ∞ 1 t 2 d t = 1 x {displaystyle int _{x}^{infty }{frac {left{tright}}{t^{2}}},mathrm {d} tleq int _{x}^{infty }{frac {1}{t^{2}}},mathrm {d} t={frac {1}{x}}} 最终得到 ∑ n ≤ x 1 n = ln ⁡ x + γ + O ( 1 x ) {displaystyle sum _{nleq x}{frac {1}{n}}=ln x+gamma +mathrm {O} ({frac {1}{x}})}除此之外,他还在1735年给出了巴塞尔问题的解答,得到 ζ ( 2 ) = π 2 6 {displaystyle zeta (2)={frac {pi ^{2}}{6}}} 的结果。欧拉最初的证明可以在巴塞尔问题中看到,然而那是他的第一个证明,因而广为人知。事实上,那个证明虽有不严谨之处,但是欧拉仍然有自己的严格证明。首先考虑当n为奇数时,将 z n − a n {displaystyle z^{n}-a^{n}} 分解为连乘积形式。 事实上,容易发现上式的全部复根为 a , a e 2 π i 1 n , a e 2 π i 2 n , . . . , a e 2 π i n − 1 n {displaystyle a,ae^{2pi i{frac {1}{n}}},ae^{2pi i{frac {2}{n}}},...,ae^{2pi i{frac {n-1}{n}}}} 由于n为奇数,所以可以将除了z=a外的其他根及其共轭一一配对,即a e 2 π i k n , a e 2 π i n − k n = a e − 2 π i k n {displaystyle ae^{2pi i{frac {k}{n}}},ae^{2pi i{frac {n-k}{n}}}=ae^{-2pi i{frac {k}{n}}}} 看做一对,则通过二次方程的韦达定理可以还原出每对根的最小多项式: 按照韦达定理,有 x 1 + x 2 = − a 1 a 0 = a e 2 π i k n + a e − 2 π i k n = cos ⁡ ( 2 π k n ) + cos ⁡ ( − 2 π k n ) = 2 cos ⁡ ( 2 π k n ) {displaystyle x_{1}+x_{2}=-{frac {a_{1}}{a_{0}}}=ae^{2pi i{frac {k}{n}}}+ae^{-2pi i{frac {k}{n}}}=cos left(2pi {frac {k}{n}}right)+cos left(-2pi {frac {k}{n}}right)=2cos left({frac {2pi k}{n}}right)} x 1 x 2 = a 2 a 0 = a e 2 π i k n a e − 2 π i k n = a 2 {displaystyle x_{1}x_{2}={frac {a_{2}}{a_{0}}}=ae^{2pi i{frac {k}{n}}}ae^{-2pi i{frac {k}{n}}}=a^{2}} 由于最小多项式首项系数为1,故 a 0 = 1 {displaystyle a_{0}=1} ,由此得到这对根最小多项式为 a 0 z 2 + a 1 z + a 2 = z 2 − 2 cos ⁡ ( 2 π k n ) z + a 2 {displaystyle a_{0}z^{2}+a_{1}z+a_{2}=z^{2}-2cos left({tfrac {2pi k}{n}}right)z+a^{2}} 注意到k的取值上限为 n − 1 2 {displaystyle {tfrac {n-1}{2}}} ,将每一对根的最小多项式相乘, 还有z=a这个根的最小多项式 z − a {displaystyle z-a} ,乘在一起,得到 z n − a n = ( z − a ) ∏ k = 1 n − 1 2 ( z 2 − 2 a z cos ⁡ 2 k π n + a 2 ) {displaystyle z^{n}-a^{n}=(z-a)prod _{k=1}^{frac {n-1}{2}}left(z^{2}-2azcos {frac {2kpi }{n}}+a^{2}right)} 令 z = 1 + x N , a = 1 − x N , N = n {displaystyle z=1+{frac {x}{N}},a=1-{frac {x}{N}},N=n} ,代入上式,有: ( 1 + x N ) N − ( 1 − x N ) N = [ ( 1 + x N ) − ( 1 − x N ) ] ∏ k = 1 N − 1 2 [ ( 1 + x N ) 2 − 2 ( 1 + x N ) ( 1 − x N ) cos ⁡ ( 2 π k N ) + ( 1 − x N ) 2 ] = 2 x N ∏ k = 1 N − 1 2 [ 2 + 2 x 2 N 2 − 2 ( 1 − x 2 N 2 ) cos ⁡ ( 2 π k N ) ] = 2 x N ∏ k = 1 N − 1 2 [ 2 + 2 x 2 N 2 − 2 cos ⁡ ( 2 π k N ) + 2 x 2 N 2 cos ⁡ ( 2 π k N ) ] = 4 x N ∏ k = 1 N − 1 2 ( ( 1 − cos ⁡ ( 2 π k N ) ) + ( 1 + cos ⁡ ( 2 π k N ) ) x 2 N 2 ) = 4 x N ∏ k = 1 N − 1 2 { [ 1 − cos ⁡ ( 2 π k N ) ] [ 1 + 1 + cos ⁡ ( 2 π k N ) 1 − cos ⁡ ( 2 π k N ) x 2 N 2 ] } {displaystyle {begin{aligned}left(1+{frac {x}{N}}right)^{N}-left(1-{frac {x}{N}}right)^{N}&=leftprod _{k=1}^{frac {N-1}{2}}left\&={frac {2x}{N}}prod _{k=1}^{frac {N-1}{2}}left\&={frac {2x}{N}}prod _{k=1}^{frac {N-1}{2}}left\&={frac {4x}{N}}prod _{k=1}^{frac {N-1}{2}}left({(1-cos({frac {2pi k}{N}}))+(1+cos({frac {2pi k}{N}})){frac {x^{2}}{N^{2}}}}right)\&={frac {4x}{N}}prod _{k=1}^{frac {N-1}{2}}left{leftleftright}\end{aligned}}} 此时,上述乘积中的 4 N ∏ k = 1 N − 1 2 ( 1 − cos ⁡ ( 2 π k N ) ) {displaystyle {frac {4}{N}}prod _{k=1}^{frac {N-1}{2}}(1-cos({frac {2pi k}{N}}))} 仅和N有关,记作 C ( N ) {displaystyle C(N)} ,上式变为 ( 1 + x N ) N − ( 1 − x N ) N = C ( N ) x ∏ k = 1 N − 1 2 ( 1 + 1 + cos ⁡ ( 2 π k N ) 1 − cos ⁡ ( 2 π k N ) x 2 N 2 ) {displaystyle left(1+{frac {x}{N}}right)^{N}-left(1-{frac {x}{N}}right)^{N}={C(N)}xprod _{k=1}^{frac {N-1}{2}}left({1+{frac {1+cos({frac {2pi k}{N}})}{1-cos({frac {2pi k}{N}})}}{frac {x^{2}}{N^{2}}}}right)} 而利用二项式定理,将等式左边展开: ( 1 + x N ) N = ∑ k = 0 N C N k x k N k {displaystyle {(1+{frac {x}{N}})^{N}}=sum _{k=0}^{N}{C_{N}^{k}{frac {x^{k}}{N^{k}}}}} ( 1 − x N ) N = ∑ k = 0 N ( − 1 ) k C N k x k N k {displaystyle {(1-{frac {x}{N}})^{N}}=sum _{k=0}^{N}{{{(-1)}^{k}}C_{N}^{k}{frac {x^{k}}{N^{k}}}}} 两式相减,考虑一次项,为 C N 1 x N − ( − 1 ) C N 1 x N = 2 C N 1 x N = 2 x {displaystyle C_{N}^{1}{frac {x}{N}}-(-1)C_{N}^{1}{frac {x}{N}}=2C_{N}^{1}{frac {x}{N}}=2x} 这正是等式的左边的一次项 而等式右边的一次项只能是连乘积中的全部1与连乘积外的C(n)x相乘,为使两边相等,必须有 C ( N ) = 2 {displaystyle C(N)=2} ,于是上式变为 ( 1 + x N ) N − ( 1 − x N ) N = 2 x ∏ k = 1 N − 1 2 ( 1 + 1 + cos ⁡ ( 2 π k N ) 1 − cos ⁡ ( 2 π k N ) x 2 N 2 ) {displaystyle left(1+{frac {x}{N}}right)^{N}-left(1-{frac {x}{N}}right)^{N}=2xprod _{k=1}^{frac {N-1}{2}}left({1+{frac {1+cos({frac {2pi k}{N}})}{1-cos({frac {2pi k}{N}})}}{frac {x^{2}}{N^{2}}}}right)} 另一方面,令 θ = 2 π k N {displaystyle theta ={frac {2pi k}{N}}} ,有 cos ⁡ ( θ ) = 1 − θ 2 2 + O ( θ 3 ) {displaystyle cos(theta )=1-{frac {theta ^{2}}{2}}+mathrm {O} (theta ^{3})} 于是,代入上式,得到 ( 1 + x N ) N − ( 1 − x N ) N = 2 x ∏ k = 1 N − 1 2 [ 1 + 1 + cos ⁡ ( 2 π k N ) 1 − cos ⁡ ( 2 π k N ) x 2 N 2 ] = 2 x ∏ k = 1 N − 1 2 { 1 + 1 + [ 1 − θ 2 2 + O ( θ 3 ) ] 1 − [ 1 − θ 2 2 + O ( θ 3 ) ] x 2 N 2 } = 2 x ∏ k = 1 N − 1 2 [ 1 + 2 − θ 2 2 + O ( θ 3 ) θ 2 2 + O ( θ 3 ) x 2 N 2 ] = 2 x ∏ k = 1 N − 1 2 ( 1 + ( 4 − θ 2 + O ( θ 3 ) ) x 2 ( θ 2 + O ( θ 3 ) ) N 2 ) = 2 x ∏ k = 1 N − 1 2 ( 1 + ( 4 − ( 2 k π N ) 2 + O ( ( 2 k π N ) 3 ) x 2 ( ( 2 k π N ) 2 + O ( ( 2 k π N ) 3 ) ) N 2 ) ) = 2 x ∏ k = 1 N − 1 2 ( 1 + ( 4 − ( 2 k π

相关

  • 磷钼酸磷钼酸(Phosphomolybdic acid)也称为十二钼磷酸,简称PMA,是化学式为H3PMo12O40的黄绿色无机化合物,是一种杂多酸,磷钼酸可溶于水及极性的有机溶剂(例如乙醇)。磷钼酸水合物为黄色固
  • 冠词冠词(英语:Article)是印欧语系和闪含语系的诸语中,位于名词或名词词组之前或之后,在句子里主要是对名词起限定作用的词。冠词是一种虚词。在现代汉语中,有限定词,但却没有冠词。粤
  • 纳米医学纳米医学是随着纳米生物医药发展起来用纳米技术解决医学问题的学科。纳米技术和材料的发展将将给医学领域带来一场深刻的革命,主要在对付癌症和治疗心血管疾病方面有重要意义
  • 神经多样性神经多样性(英语:Neurodiversity)是一个公民社会运动(英语:Civil_society_campaign),旨在呼吁把各种所谓神经功能障碍(英语:Neurological disorder)理解为人类基因组正常范围内的变化
  • 蓝婴综合征青紫婴儿(blue baby),或称为发绀婴儿、蓝婴,是指婴儿因先天性心脏缺损或后天性缺氧,血含氧量较正常人低,造成发绀现象。因患儿身体呈蓝紫色而得名。青紫型先天性心脏病包括:Templat
  • 刘伯温刘基像,顾见龙绘道家系列条目刘基(1311年7月1日-1375年5月27日),字伯温,浙江省青田县(今文成县)人,祖籍陕西保安(志丹),南宋抗金将领刘光世的后人。元末明初军事家、政治家及诗人,通经史
  • 海盗湾海盗湾(英语:The Pirate Bay,缩写:TPB)是一个专门存储、分类及搜索Bittorrent种子文件及磁力链接的网站,由瑞典的民间反著作权组织海盗署(英语:Piratbyrån)于2003年成立,支持35种语言
  • 1964年 什平德莱鲁夫姆林第三届冬季世界大学生运动会于1964年2月11日至17日在捷克斯洛伐克什平德莱鲁夫姆林举行。这是什平德莱鲁夫姆林首次主办冬季世界大学生运动会。*  主办国家/地区(捷克斯洛
  • 月球人造物体列表月球上现在正在使用的人造物体有用于月球激光测距实验的激光反射镜。几只被美国宇航员留下的高尔夫球也在月球上。下表列出了部分月球表面的人造物体:人类留在月球上的物体约
  • 生殖成就适应度(英语:Fitness),又可称适存度或生殖成就,是生物学,特别是群体遗传学、数理生物学中用来描述拥有某一特定基因型的个体,在繁殖上的成功率或能力。假如带有不同基因型的个体拥