首页 >
ζ函数
✍ dations ◷ 2024-12-23 00:17:27 #ζ函数
黎曼ζ函数 .mw-parser-output .serif{font-family:Times,serif}ζ(s) 的定义如下:
设一复数 s 使得 Re(s) > 1,则定义:它亦可以用积分定义:在区域 {s : Re(s) > 1} 上,此无穷级数收敛并为一全纯函数。欧拉在1740年考虑过 s 为正整数的情况,后来切比雪夫拓展到 s > 1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓,把定义域扩展到几乎整个复数域上的全纯函数 ζ(s)。这也是黎曼猜想所研究的函数。虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齐夫定律和齐夫-曼德尔布罗特定律(英语:Zipf–Mandelbrot law))、物理,以及调音的数学理论中。ζ函数最早出现于1350年左右,当时的尼克尔·奥里斯姆发现了调和级数发散,即
ζ
(
1
)
=
1
+
1
2
+
1
3
+
1
4
+
.
.
.
→
∞
{displaystyle zeta (1)=1+{frac {1}{2}}+{frac {1}{3}}+{frac {1}{4}}+...to infty }之后的一次进展来自莱昂哈德·欧拉,他给出了调和级数呈对数发散。∑
y
<
n
≤
x
f
(
n
)
=
∫
y
x
f
(
t
)
d
t
+
∫
y
x
(
t
−
⌊
t
⌋
)
f
′
(
t
)
d
t
+
f
(
x
)
(
⌊
x
⌋
−
x
)
−
f
(
y
)
(
⌊
y
⌋
−
y
)
{displaystyle sum _{y<nleq x}f(n)=int _{y}^{x}f(t),mathrm {d} t+int _{y}^{x}(t-leftlfloor trightrfloor )f'(t),mathrm {d} t+f(x)(leftlfloor xrightrfloor -x)-f(y)(leftlfloor yrightrfloor -y)}
∑
n
≤
x
1
n
=
1
+
∫
1
x
1
t
d
t
−
∫
1
x
(
t
−
⌊
t
⌋
)
t
2
d
t
+
⌊
x
⌋
−
x
x
=
1
+
ln
x
−
∫
1
x
(
t
−
⌊
t
⌋
)
t
2
d
t
+
O
(
1
x
)
=
1
+
ln
x
−
∫
1
∞
(
t
−
⌊
t
⌋
)
t
2
d
t
+
∫
x
∞
(
t
−
⌊
t
⌋
)
t
2
d
t
+
O
(
1
x
)
=
ln
x
+
1
−
∫
1
∞
(
t
−
⌊
t
⌋
)
t
2
d
t
+
∫
x
∞
{
t
}
t
2
d
t
+
O
(
1
x
)
{displaystyle {begin{aligned}sum _{nleq x}{frac {1}{n}}&=1+int _{1}^{x}{frac {1}{t}},mathrm {d} t-int _{1}^{x}{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+{frac {leftlfloor xrightrfloor -x}{x}}\&=1+ln x-int _{1}^{x}{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+mathrm {O} left({frac {1}{x}}right)\&=1+ln x-int _{1}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+int _{x}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+mathrm {O} left({frac {1}{x}}right)\&=ln x+1-int _{1}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+int _{x}^{infty }{frac {left{tright}}{t^{2}}},mathrm {d} t+mathrm {O} left({frac {1}{x}}right)\end{aligned}}}
注意到其中的
1
−
∫
1
∞
(
t
−
⌊
t
⌋
)
t
2
d
t
{displaystyle 1-int _{1}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t}
是一个常数。实际上,这就是欧拉-马斯刻若尼常数γ
再考虑剩下的一个积分,也就是
∫
x
∞
{
t
}
t
2
d
t
{displaystyle int _{x}^{infty }{frac {left{tright}}{t^{2}}},mathrm {d} t}
由于被积项非负,又有
{
t
}
≤
1
{displaystyle left{tright}leq 1}
,于是
∫
x
∞
{
t
}
t
2
d
t
≤
∫
x
∞
1
t
2
d
t
=
1
x
{displaystyle int _{x}^{infty }{frac {left{tright}}{t^{2}}},mathrm {d} tleq int _{x}^{infty }{frac {1}{t^{2}}},mathrm {d} t={frac {1}{x}}}
最终得到
∑
n
≤
x
1
n
=
ln
x
+
γ
+
O
(
1
x
)
{displaystyle sum _{nleq x}{frac {1}{n}}=ln x+gamma +mathrm {O} ({frac {1}{x}})}除此之外,他还在1735年给出了巴塞尔问题的解答,得到
ζ
(
2
)
=
π
2
6
{displaystyle zeta (2)={frac {pi ^{2}}{6}}}
的结果。欧拉最初的证明可以在巴塞尔问题中看到,然而那是他的第一个证明,因而广为人知。事实上,那个证明虽有不严谨之处,但是欧拉仍然有自己的严格证明。首先考虑当n为奇数时,将
z
n
−
a
n
{displaystyle z^{n}-a^{n}}
分解为连乘积形式。
事实上,容易发现上式的全部复根为
a
,
a
e
2
π
i
1
n
,
a
e
2
π
i
2
n
,
.
.
.
,
a
e
2
π
i
n
−
1
n
{displaystyle a,ae^{2pi i{frac {1}{n}}},ae^{2pi i{frac {2}{n}}},...,ae^{2pi i{frac {n-1}{n}}}}
由于n为奇数,所以可以将除了z=a外的其他根及其共轭一一配对,即a
e
2
π
i
k
n
,
a
e
2
π
i
n
−
k
n
=
a
e
−
2
π
i
k
n
{displaystyle ae^{2pi i{frac {k}{n}}},ae^{2pi i{frac {n-k}{n}}}=ae^{-2pi i{frac {k}{n}}}}
看做一对,则通过二次方程的韦达定理可以还原出每对根的最小多项式:
按照韦达定理,有
x
1
+
x
2
=
−
a
1
a
0
=
a
e
2
π
i
k
n
+
a
e
−
2
π
i
k
n
=
cos
(
2
π
k
n
)
+
cos
(
−
2
π
k
n
)
=
2
cos
(
2
π
k
n
)
{displaystyle x_{1}+x_{2}=-{frac {a_{1}}{a_{0}}}=ae^{2pi i{frac {k}{n}}}+ae^{-2pi i{frac {k}{n}}}=cos left(2pi {frac {k}{n}}right)+cos left(-2pi {frac {k}{n}}right)=2cos left({frac {2pi k}{n}}right)}
x
1
x
2
=
a
2
a
0
=
a
e
2
π
i
k
n
a
e
−
2
π
i
k
n
=
a
2
{displaystyle x_{1}x_{2}={frac {a_{2}}{a_{0}}}=ae^{2pi i{frac {k}{n}}}ae^{-2pi i{frac {k}{n}}}=a^{2}}
由于最小多项式首项系数为1,故
a
0
=
1
{displaystyle a_{0}=1}
,由此得到这对根最小多项式为
a
0
z
2
+
a
1
z
+
a
2
=
z
2
−
2
cos
(
2
π
k
n
)
z
+
a
2
{displaystyle a_{0}z^{2}+a_{1}z+a_{2}=z^{2}-2cos left({tfrac {2pi k}{n}}right)z+a^{2}}
注意到k的取值上限为
n
−
1
2
{displaystyle {tfrac {n-1}{2}}}
,将每一对根的最小多项式相乘,
还有z=a这个根的最小多项式
z
−
a
{displaystyle z-a}
,乘在一起,得到
z
n
−
a
n
=
(
z
−
a
)
∏
k
=
1
n
−
1
2
(
z
2
−
2
a
z
cos
2
k
π
n
+
a
2
)
{displaystyle z^{n}-a^{n}=(z-a)prod _{k=1}^{frac {n-1}{2}}left(z^{2}-2azcos {frac {2kpi }{n}}+a^{2}right)}
令
z
=
1
+
x
N
,
a
=
1
−
x
N
,
N
=
n
{displaystyle z=1+{frac {x}{N}},a=1-{frac {x}{N}},N=n}
,代入上式,有:
(
1
+
x
N
)
N
−
(
1
−
x
N
)
N
=
[
(
1
+
x
N
)
−
(
1
−
x
N
)
]
∏
k
=
1
N
−
1
2
[
(
1
+
x
N
)
2
−
2
(
1
+
x
N
)
(
1
−
x
N
)
cos
(
2
π
k
N
)
+
(
1
−
x
N
)
2
]
=
2
x
N
∏
k
=
1
N
−
1
2
[
2
+
2
x
2
N
2
−
2
(
1
−
x
2
N
2
)
cos
(
2
π
k
N
)
]
=
2
x
N
∏
k
=
1
N
−
1
2
[
2
+
2
x
2
N
2
−
2
cos
(
2
π
k
N
)
+
2
x
2
N
2
cos
(
2
π
k
N
)
]
=
4
x
N
∏
k
=
1
N
−
1
2
(
(
1
−
cos
(
2
π
k
N
)
)
+
(
1
+
cos
(
2
π
k
N
)
)
x
2
N
2
)
=
4
x
N
∏
k
=
1
N
−
1
2
{
[
1
−
cos
(
2
π
k
N
)
]
[
1
+
1
+
cos
(
2
π
k
N
)
1
−
cos
(
2
π
k
N
)
x
2
N
2
]
}
{displaystyle {begin{aligned}left(1+{frac {x}{N}}right)^{N}-left(1-{frac {x}{N}}right)^{N}&=leftprod _{k=1}^{frac {N-1}{2}}left\&={frac {2x}{N}}prod _{k=1}^{frac {N-1}{2}}left\&={frac {2x}{N}}prod _{k=1}^{frac {N-1}{2}}left\&={frac {4x}{N}}prod _{k=1}^{frac {N-1}{2}}left({(1-cos({frac {2pi k}{N}}))+(1+cos({frac {2pi k}{N}})){frac {x^{2}}{N^{2}}}}right)\&={frac {4x}{N}}prod _{k=1}^{frac {N-1}{2}}left{leftleftright}\end{aligned}}}
此时,上述乘积中的
4
N
∏
k
=
1
N
−
1
2
(
1
−
cos
(
2
π
k
N
)
)
{displaystyle {frac {4}{N}}prod _{k=1}^{frac {N-1}{2}}(1-cos({frac {2pi k}{N}}))}
仅和N有关,记作
C
(
N
)
{displaystyle C(N)}
,上式变为
(
1
+
x
N
)
N
−
(
1
−
x
N
)
N
=
C
(
N
)
x
∏
k
=
1
N
−
1
2
(
1
+
1
+
cos
(
2
π
k
N
)
1
−
cos
(
2
π
k
N
)
x
2
N
2
)
{displaystyle left(1+{frac {x}{N}}right)^{N}-left(1-{frac {x}{N}}right)^{N}={C(N)}xprod _{k=1}^{frac {N-1}{2}}left({1+{frac {1+cos({frac {2pi k}{N}})}{1-cos({frac {2pi k}{N}})}}{frac {x^{2}}{N^{2}}}}right)}
而利用二项式定理,将等式左边展开:
(
1
+
x
N
)
N
=
∑
k
=
0
N
C
N
k
x
k
N
k
{displaystyle {(1+{frac {x}{N}})^{N}}=sum _{k=0}^{N}{C_{N}^{k}{frac {x^{k}}{N^{k}}}}}
(
1
−
x
N
)
N
=
∑
k
=
0
N
(
−
1
)
k
C
N
k
x
k
N
k
{displaystyle {(1-{frac {x}{N}})^{N}}=sum _{k=0}^{N}{{{(-1)}^{k}}C_{N}^{k}{frac {x^{k}}{N^{k}}}}}
两式相减,考虑一次项,为
C
N
1
x
N
−
(
−
1
)
C
N
1
x
N
=
2
C
N
1
x
N
=
2
x
{displaystyle C_{N}^{1}{frac {x}{N}}-(-1)C_{N}^{1}{frac {x}{N}}=2C_{N}^{1}{frac {x}{N}}=2x}
这正是等式的左边的一次项
而等式右边的一次项只能是连乘积中的全部1与连乘积外的C(n)x相乘,为使两边相等,必须有
C
(
N
)
=
2
{displaystyle C(N)=2}
,于是上式变为
(
1
+
x
N
)
N
−
(
1
−
x
N
)
N
=
2
x
∏
k
=
1
N
−
1
2
(
1
+
1
+
cos
(
2
π
k
N
)
1
−
cos
(
2
π
k
N
)
x
2
N
2
)
{displaystyle left(1+{frac {x}{N}}right)^{N}-left(1-{frac {x}{N}}right)^{N}=2xprod _{k=1}^{frac {N-1}{2}}left({1+{frac {1+cos({frac {2pi k}{N}})}{1-cos({frac {2pi k}{N}})}}{frac {x^{2}}{N^{2}}}}right)}
另一方面,令
θ
=
2
π
k
N
{displaystyle theta ={frac {2pi k}{N}}}
,有
cos
(
θ
)
=
1
−
θ
2
2
+
O
(
θ
3
)
{displaystyle cos(theta )=1-{frac {theta ^{2}}{2}}+mathrm {O} (theta ^{3})}
于是,代入上式,得到
(
1
+
x
N
)
N
−
(
1
−
x
N
)
N
=
2
x
∏
k
=
1
N
−
1
2
[
1
+
1
+
cos
(
2
π
k
N
)
1
−
cos
(
2
π
k
N
)
x
2
N
2
]
=
2
x
∏
k
=
1
N
−
1
2
{
1
+
1
+
[
1
−
θ
2
2
+
O
(
θ
3
)
]
1
−
[
1
−
θ
2
2
+
O
(
θ
3
)
]
x
2
N
2
}
=
2
x
∏
k
=
1
N
−
1
2
[
1
+
2
−
θ
2
2
+
O
(
θ
3
)
θ
2
2
+
O
(
θ
3
)
x
2
N
2
]
=
2
x
∏
k
=
1
N
−
1
2
(
1
+
(
4
−
θ
2
+
O
(
θ
3
)
)
x
2
(
θ
2
+
O
(
θ
3
)
)
N
2
)
=
2
x
∏
k
=
1
N
−
1
2
(
1
+
(
4
−
(
2
k
π
N
)
2
+
O
(
(
2
k
π
N
)
3
)
x
2
(
(
2
k
π
N
)
2
+
O
(
(
2
k
π
N
)
3
)
)
N
2
)
)
=
2
x
∏
k
=
1
N
−
1
2
(
1
+
(
4
−
(
2
k
π
相关
- 有效剂量有效剂量(Effective dose)是药理学及辐射防护的统计名词。一个药物在进行治疗实验时,产生有效反应的比例即为有效剂量。在统计人体全身各组织及器官所吸收到的辐射剂量,依不同器
- 刺尾鱼毒素刺尾鱼毒素(英语:Maitotoxin,简称MTX)是一种由甲藻门中的岗比甲藻(Gambierdiscus toxicus)产生的剧毒物质。这种化合物是目前人类发现的毒性最强的非蛋白质类毒素:对小鼠的LD50仅为
- 表演艺术音乐 · 舞蹈 · 戏剧 (戏曲 · 话剧 · 歌剧 · 音乐剧 · 芭蕾舞剧)曲艺 · 杂技 · 魔术 · 木偶戏 · 默剧 · 公共演说戏剧 · 悲剧 · 喜剧
- 玛莉·里昂玛莉·弗朗西丝·里昂(英语:Mary Frances Lyon,1925年5月15日-),英国遗传学家,英国皇家学会院士与美国国家科学院外籍院士。主要的研究对象,是辐射等因子对遗传学突变的影响以及应用
- 韦茅斯韦茅斯(英语:Weymouth)是美国马萨诸塞州的一个城市,位于大波士顿都市圈之内。据2010年人口普查,韦茅斯有人口53,743人。韦茅斯这一地名来自于英国海滨城镇韦茅斯,是马萨诸塞州第二
- rhabdomyolysis横纹肌溶解症(英语:Rhabdomyolysis)是人体肌肉细胞坏死所造成的疾病。一些肌肉细胞崩坏后释放的产物(如肌红蛋白)会进入血液并对肾脏造成伤害,导致肾衰竭。横纹肌溶解症的症状包括
- 民雄乡#历史民雄乡(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} Bîn-
- 布鲁克林大桥布鲁克林大桥(英语:Brooklyn Bridge),原称为纽约与布鲁克林大桥(英语:New York and Brooklyn Bridge)或东河大桥(英语:East River Bridge),是美国最老的悬索桥之一,建于1883年,其1,825米(5
- 沙石场砂石场(包括“采石场”和“采砂场”),指建筑用砂、建筑用石的采掘、精选加工生产单位。砂石场多为成片连接的开放性露天开采区域,属于生产性企业单位。采石场多位于岩石富集区,多
- 泛甲壳动物泛甲壳动物(学名:Pancrustacea)是甲壳类及六足亚门的总称。这个分类与缺角类有矛盾,因缺角类只包含多足纲及六足亚门,并认为甲壳类是较为疏远的。截至2010年,泛甲壳动物已被广泛接