ζ函数

✍ dations ◷ 2025-06-28 07:08:52 #ζ函数
黎曼ζ函数 .mw-parser-output .serif{font-family:Times,serif}ζ(s) 的定义如下: 设一复数 s 使得 Re(s) > 1,则定义:它亦可以用积分定义:在区域 {s : Re(s) > 1} 上,此无穷级数收敛并为一全纯函数。欧拉在1740年考虑过 s 为正整数的情况,后来切比雪夫拓展到 s > 1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓,把定义域扩展到几乎整个复数域上的全纯函数 ζ(s)。这也是黎曼猜想所研究的函数。虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齐夫定律和齐夫-曼德尔布罗特定律(英语:Zipf–Mandelbrot law))、物理,以及调音的数学理论中。ζ函数最早出现于1350年左右,当时的尼克尔·奥里斯姆发现了调和级数发散,即 ζ ( 1 ) = 1 + 1 2 + 1 3 + 1 4 + . . . → ∞ {displaystyle zeta (1)=1+{frac {1}{2}}+{frac {1}{3}}+{frac {1}{4}}+...to infty }之后的一次进展来自莱昂哈德·欧拉,他给出了调和级数呈对数发散。∑ y < n ≤ x f ( n ) = ∫ y x f ( t ) d t + ∫ y x ( t − ⌊ t ⌋ ) f ′ ( t ) d t + f ( x ) ( ⌊ x ⌋ − x ) − f ( y ) ( ⌊ y ⌋ − y ) {displaystyle sum _{y<nleq x}f(n)=int _{y}^{x}f(t),mathrm {d} t+int _{y}^{x}(t-leftlfloor trightrfloor )f'(t),mathrm {d} t+f(x)(leftlfloor xrightrfloor -x)-f(y)(leftlfloor yrightrfloor -y)} ∑ n ≤ x 1 n = 1 + ∫ 1 x 1 t d t − ∫ 1 x ( t − ⌊ t ⌋ ) t 2 d t + ⌊ x ⌋ − x x = 1 + ln ⁡ x − ∫ 1 x ( t − ⌊ t ⌋ ) t 2 d t + O ( 1 x ) = 1 + ln ⁡ x − ∫ 1 ∞ ( t − ⌊ t ⌋ ) t 2 d t + ∫ x ∞ ( t − ⌊ t ⌋ ) t 2 d t + O ( 1 x ) = ln ⁡ x + 1 − ∫ 1 ∞ ( t − ⌊ t ⌋ ) t 2 d t + ∫ x ∞ { t } t 2 d t + O ( 1 x ) {displaystyle {begin{aligned}sum _{nleq x}{frac {1}{n}}&=1+int _{1}^{x}{frac {1}{t}},mathrm {d} t-int _{1}^{x}{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+{frac {leftlfloor xrightrfloor -x}{x}}\&=1+ln x-int _{1}^{x}{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+mathrm {O} left({frac {1}{x}}right)\&=1+ln x-int _{1}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+int _{x}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+mathrm {O} left({frac {1}{x}}right)\&=ln x+1-int _{1}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t+int _{x}^{infty }{frac {left{tright}}{t^{2}}},mathrm {d} t+mathrm {O} left({frac {1}{x}}right)\end{aligned}}} 注意到其中的 1 − ∫ 1 ∞ ( t − ⌊ t ⌋ ) t 2 d t {displaystyle 1-int _{1}^{infty }{frac {(t-leftlfloor trightrfloor )}{t^{2}}},mathrm {d} t} 是一个常数。实际上,这就是欧拉-马斯刻若尼常数γ 再考虑剩下的一个积分,也就是 ∫ x ∞ { t } t 2 d t {displaystyle int _{x}^{infty }{frac {left{tright}}{t^{2}}},mathrm {d} t} 由于被积项非负,又有 { t } ≤ 1 {displaystyle left{tright}leq 1} ,于是 ∫ x ∞ { t } t 2 d t ≤ ∫ x ∞ 1 t 2 d t = 1 x {displaystyle int _{x}^{infty }{frac {left{tright}}{t^{2}}},mathrm {d} tleq int _{x}^{infty }{frac {1}{t^{2}}},mathrm {d} t={frac {1}{x}}} 最终得到 ∑ n ≤ x 1 n = ln ⁡ x + γ + O ( 1 x ) {displaystyle sum _{nleq x}{frac {1}{n}}=ln x+gamma +mathrm {O} ({frac {1}{x}})}除此之外,他还在1735年给出了巴塞尔问题的解答,得到 ζ ( 2 ) = π 2 6 {displaystyle zeta (2)={frac {pi ^{2}}{6}}} 的结果。欧拉最初的证明可以在巴塞尔问题中看到,然而那是他的第一个证明,因而广为人知。事实上,那个证明虽有不严谨之处,但是欧拉仍然有自己的严格证明。首先考虑当n为奇数时,将 z n − a n {displaystyle z^{n}-a^{n}} 分解为连乘积形式。 事实上,容易发现上式的全部复根为 a , a e 2 π i 1 n , a e 2 π i 2 n , . . . , a e 2 π i n − 1 n {displaystyle a,ae^{2pi i{frac {1}{n}}},ae^{2pi i{frac {2}{n}}},...,ae^{2pi i{frac {n-1}{n}}}} 由于n为奇数,所以可以将除了z=a外的其他根及其共轭一一配对,即a e 2 π i k n , a e 2 π i n − k n = a e − 2 π i k n {displaystyle ae^{2pi i{frac {k}{n}}},ae^{2pi i{frac {n-k}{n}}}=ae^{-2pi i{frac {k}{n}}}} 看做一对,则通过二次方程的韦达定理可以还原出每对根的最小多项式: 按照韦达定理,有 x 1 + x 2 = − a 1 a 0 = a e 2 π i k n + a e − 2 π i k n = cos ⁡ ( 2 π k n ) + cos ⁡ ( − 2 π k n ) = 2 cos ⁡ ( 2 π k n ) {displaystyle x_{1}+x_{2}=-{frac {a_{1}}{a_{0}}}=ae^{2pi i{frac {k}{n}}}+ae^{-2pi i{frac {k}{n}}}=cos left(2pi {frac {k}{n}}right)+cos left(-2pi {frac {k}{n}}right)=2cos left({frac {2pi k}{n}}right)} x 1 x 2 = a 2 a 0 = a e 2 π i k n a e − 2 π i k n = a 2 {displaystyle x_{1}x_{2}={frac {a_{2}}{a_{0}}}=ae^{2pi i{frac {k}{n}}}ae^{-2pi i{frac {k}{n}}}=a^{2}} 由于最小多项式首项系数为1,故 a 0 = 1 {displaystyle a_{0}=1} ,由此得到这对根最小多项式为 a 0 z 2 + a 1 z + a 2 = z 2 − 2 cos ⁡ ( 2 π k n ) z + a 2 {displaystyle a_{0}z^{2}+a_{1}z+a_{2}=z^{2}-2cos left({tfrac {2pi k}{n}}right)z+a^{2}} 注意到k的取值上限为 n − 1 2 {displaystyle {tfrac {n-1}{2}}} ,将每一对根的最小多项式相乘, 还有z=a这个根的最小多项式 z − a {displaystyle z-a} ,乘在一起,得到 z n − a n = ( z − a ) ∏ k = 1 n − 1 2 ( z 2 − 2 a z cos ⁡ 2 k π n + a 2 ) {displaystyle z^{n}-a^{n}=(z-a)prod _{k=1}^{frac {n-1}{2}}left(z^{2}-2azcos {frac {2kpi }{n}}+a^{2}right)} 令 z = 1 + x N , a = 1 − x N , N = n {displaystyle z=1+{frac {x}{N}},a=1-{frac {x}{N}},N=n} ,代入上式,有: ( 1 + x N ) N − ( 1 − x N ) N = [ ( 1 + x N ) − ( 1 − x N ) ] ∏ k = 1 N − 1 2 [ ( 1 + x N ) 2 − 2 ( 1 + x N ) ( 1 − x N ) cos ⁡ ( 2 π k N ) + ( 1 − x N ) 2 ] = 2 x N ∏ k = 1 N − 1 2 [ 2 + 2 x 2 N 2 − 2 ( 1 − x 2 N 2 ) cos ⁡ ( 2 π k N ) ] = 2 x N ∏ k = 1 N − 1 2 [ 2 + 2 x 2 N 2 − 2 cos ⁡ ( 2 π k N ) + 2 x 2 N 2 cos ⁡ ( 2 π k N ) ] = 4 x N ∏ k = 1 N − 1 2 ( ( 1 − cos ⁡ ( 2 π k N ) ) + ( 1 + cos ⁡ ( 2 π k N ) ) x 2 N 2 ) = 4 x N ∏ k = 1 N − 1 2 { [ 1 − cos ⁡ ( 2 π k N ) ] [ 1 + 1 + cos ⁡ ( 2 π k N ) 1 − cos ⁡ ( 2 π k N ) x 2 N 2 ] } {displaystyle {begin{aligned}left(1+{frac {x}{N}}right)^{N}-left(1-{frac {x}{N}}right)^{N}&=leftprod _{k=1}^{frac {N-1}{2}}left\&={frac {2x}{N}}prod _{k=1}^{frac {N-1}{2}}left\&={frac {2x}{N}}prod _{k=1}^{frac {N-1}{2}}left\&={frac {4x}{N}}prod _{k=1}^{frac {N-1}{2}}left({(1-cos({frac {2pi k}{N}}))+(1+cos({frac {2pi k}{N}})){frac {x^{2}}{N^{2}}}}right)\&={frac {4x}{N}}prod _{k=1}^{frac {N-1}{2}}left{leftleftright}\end{aligned}}} 此时,上述乘积中的 4 N ∏ k = 1 N − 1 2 ( 1 − cos ⁡ ( 2 π k N ) ) {displaystyle {frac {4}{N}}prod _{k=1}^{frac {N-1}{2}}(1-cos({frac {2pi k}{N}}))} 仅和N有关,记作 C ( N ) {displaystyle C(N)} ,上式变为 ( 1 + x N ) N − ( 1 − x N ) N = C ( N ) x ∏ k = 1 N − 1 2 ( 1 + 1 + cos ⁡ ( 2 π k N ) 1 − cos ⁡ ( 2 π k N ) x 2 N 2 ) {displaystyle left(1+{frac {x}{N}}right)^{N}-left(1-{frac {x}{N}}right)^{N}={C(N)}xprod _{k=1}^{frac {N-1}{2}}left({1+{frac {1+cos({frac {2pi k}{N}})}{1-cos({frac {2pi k}{N}})}}{frac {x^{2}}{N^{2}}}}right)} 而利用二项式定理,将等式左边展开: ( 1 + x N ) N = ∑ k = 0 N C N k x k N k {displaystyle {(1+{frac {x}{N}})^{N}}=sum _{k=0}^{N}{C_{N}^{k}{frac {x^{k}}{N^{k}}}}} ( 1 − x N ) N = ∑ k = 0 N ( − 1 ) k C N k x k N k {displaystyle {(1-{frac {x}{N}})^{N}}=sum _{k=0}^{N}{{{(-1)}^{k}}C_{N}^{k}{frac {x^{k}}{N^{k}}}}} 两式相减,考虑一次项,为 C N 1 x N − ( − 1 ) C N 1 x N = 2 C N 1 x N = 2 x {displaystyle C_{N}^{1}{frac {x}{N}}-(-1)C_{N}^{1}{frac {x}{N}}=2C_{N}^{1}{frac {x}{N}}=2x} 这正是等式的左边的一次项 而等式右边的一次项只能是连乘积中的全部1与连乘积外的C(n)x相乘,为使两边相等,必须有 C ( N ) = 2 {displaystyle C(N)=2} ,于是上式变为 ( 1 + x N ) N − ( 1 − x N ) N = 2 x ∏ k = 1 N − 1 2 ( 1 + 1 + cos ⁡ ( 2 π k N ) 1 − cos ⁡ ( 2 π k N ) x 2 N 2 ) {displaystyle left(1+{frac {x}{N}}right)^{N}-left(1-{frac {x}{N}}right)^{N}=2xprod _{k=1}^{frac {N-1}{2}}left({1+{frac {1+cos({frac {2pi k}{N}})}{1-cos({frac {2pi k}{N}})}}{frac {x^{2}}{N^{2}}}}right)} 另一方面,令 θ = 2 π k N {displaystyle theta ={frac {2pi k}{N}}} ,有 cos ⁡ ( θ ) = 1 − θ 2 2 + O ( θ 3 ) {displaystyle cos(theta )=1-{frac {theta ^{2}}{2}}+mathrm {O} (theta ^{3})} 于是,代入上式,得到 ( 1 + x N ) N − ( 1 − x N ) N = 2 x ∏ k = 1 N − 1 2 [ 1 + 1 + cos ⁡ ( 2 π k N ) 1 − cos ⁡ ( 2 π k N ) x 2 N 2 ] = 2 x ∏ k = 1 N − 1 2 { 1 + 1 + [ 1 − θ 2 2 + O ( θ 3 ) ] 1 − [ 1 − θ 2 2 + O ( θ 3 ) ] x 2 N 2 } = 2 x ∏ k = 1 N − 1 2 [ 1 + 2 − θ 2 2 + O ( θ 3 ) θ 2 2 + O ( θ 3 ) x 2 N 2 ] = 2 x ∏ k = 1 N − 1 2 ( 1 + ( 4 − θ 2 + O ( θ 3 ) ) x 2 ( θ 2 + O ( θ 3 ) ) N 2 ) = 2 x ∏ k = 1 N − 1 2 ( 1 + ( 4 − ( 2 k π N ) 2 + O ( ( 2 k π N ) 3 ) x 2 ( ( 2 k π N ) 2 + O ( ( 2 k π N ) 3 ) ) N 2 ) ) = 2 x ∏ k = 1 N − 1 2 ( 1 + ( 4 − ( 2 k π

相关

  • 吉特曼氏综合症吉特曼氏综合症(英语:Gitelman syndrome),又称吉特曼症候群 ,是一种常染色体隐性肾脏疾病,其特点是低钙(hypocalciuria)、及低镁(hypomagnesemia)之低钾代谢性碱中毒(Metabolic alkalos
  • 共有衍征共有衍征或共源性状,在演化生物学是一种两个或以上终端分类单元共有及从其最近共同祖先承袭的衍生性状状态。共有衍征是一种衍生而来的性状状态,并源自其后最共同祖先。假若有
  • 双倍体染色体倍性是指细胞内同源染色体的数目,只有一组最基本的称为“单套”或“单倍体”(haploid),两组备份称为“双套”或“二倍体”(diploid)。多倍体的细胞则有更多套的染色体。其中
  • 诺斯第二代吉尔福德伯爵腓特烈·诺斯,KG,PC(英语:Frederick North, 2nd Earl of Guilford,1732年4月13日-1792年8月5日),诺斯勋爵(Lord North)是更为人所知的头衔,于1770年至1782年出任大不
  • 肽序列蛋白质一级结构(英语:Protein primary structure)是肽或蛋白质中氨基酸的线性序列。按照惯例,蛋白质的一级结构被报道从氨基末端(N)端到羧基末端(C)端。蛋白质生物合成最通常由细胞
  • 人行道人行道(行人专用道)是专门为了行人而铺设的道路。
  • 冲动控制能力异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
  • 杨森制药杨森制药(英语:Janssen Pharmaceutica)是一家比利时制药公司。1953年由比利时化学家保罗·杨森创建,1961年10月24日被美国强生公司收购。1976年保罗·杨森遇见马海德,在几天商
  • 穿刺穿刺是古代的一种酷刑,即将犯人的身体用一根木棒刺穿。穿刺之刑往往使用一根很长的木棒,插入人体的特定部位,如直肠、阴道、口腔等。如此的方法会导致受刑者在痛苦中死亡,有时候
  • 能源安全法国电力近9成来自核能和水力,进口交通被切断时能源安全较高能源安全是一国家安全名词,为能源所带来的潜在一切危害国家利益问题探讨。最常见能源安全问题是能源缺乏,尤其是无