磁层

✍ dations ◷ 2025-01-23 07:59:13 #磁层
磁层是一个天体周围、以该天体的磁场为主的地区。地球、木星、土星、天王星和海王星的周围均有磁层。火星仅有局部的磁场,因此不能形成一个磁层。除此之外其它拥有磁场的天体如脉冲星也有磁层。1958年探险者一号人造卫星在国际地球物理年的研究范围内发现了地球的磁层。由于太阳耀斑有时导致“磁暴”,因此科学家在此前就已经知道在太空中有电流流动,但是当时没有人知道这些电流在哪里流动和其原理是什么,当时人们也不知道太阳风的存在。1958年8月和9月美国进行试验来测试关于辐射带的理论以及是否能够在战争中利用它。1959年托马斯·戈尔德提议使用“磁层”这个名称。他写道:地球磁层的形状和大小由地球磁场、太阳风离子和行星际磁场决定。在磁层里来自太阳风和地球电离层的自由等离子和电子主要受到磁力和电力的影响,而地球的万有引力以及这些电荷之间的碰撞则起一个不重要的作用。磁层并不是球状的,在面对太阳的一面其边界离地心的距离约为七万千米(随太阳风强度的变化而变化)。磁层的边界称为磁顶,在对太阳的方向它离地心约为15倍地球半径,在背着太阳的方向它离地心约为20至25倍地球半径,而磁尾长度则可以延伸到离地心200倍地球半径的距离以上,遥远看去,磁层好像彗星一样,其具体的距离不明。地球最外层的中性气体层被称为地冕,它主要由最轻的原子如氢和氦组成,它可以延续到离地心四至五地球半径的地方,其密度逐渐降低。磁层中的高温等离子可以与这些原子碰撞获得电子,由此产生高速的逃逸原子,这个过程可以被用来测试和显示高温等离子云。地球电离层的最外部分被称为等离子层,它也可以达到离地心四至五地球半径的地方,其密度也不断降低。在此以上被称为极风(英语:Polar wind)的轻等离子流能够逃逸出磁层,与太阳风会合。极光所释放的能量可以强烈地加热大气层中的氧和氧气分子,本来这些粒子太重了,无法逃逸地球引力,但是在太阳活动强烈期间这些被加热的粒子可以外流到磁层内,这个过程有时甚至能够将以地球物质为主的地区(也被称为第四或等离子地层)扩展到磁顶。以下两个因素对地球磁层的结构和性能起决定性作用:地球磁场和太阳风。出于物理原因太阳风的等离子与地球磁场导致的等离子不易融合,因此两个等离子体之间形成一明显的边界,即磁顶。地球的等离子体成为被流动的太阳风所包含的一个腔。出于不同的物理原理(比如磁重联)两者之间的隔绝不完全,因此太阳风可以将许多能量传递给磁层。在面对太阳的一面,在离地心13.5地球半径左右的地方磁层与太阳风形成一个无撞击的弓形激波。这个激波导致的原因是因为太阳风的速度一般为阿尔文波的两至三倍。在激波背面等离子体的速度迅速降低到阿尔文速度(同时等离子体温度骤升,来吸收释放出来的动能)。但是由于周边太阳风的拉力等离子体的速度很快又恢复到原来的速度。1958年前半年美国的探险者一号、探险者三号(英语:Explorer 3)和苏联的卫星三号(英语:Sputnik 3)等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。后来人们发现在离地球中心2.5至8个地球半径的地方还有一层被地磁场束缚的离子和电子。这些等离子中能量比较高的(约1MeV)被称为外辐射带,而其主要组成部分则能量比较低(在65keV左右),这些等离子组成环电流等离子。被束缚在磁场中的离子可以非常稳定,尤其内辐射带的离子非常稳定,这里的粒子可以维持数年之久。比如1962年7月美国在这个层里爆炸了一枚氢弹(英语:Starfish Prime),其导致的人工的高能电子带在四五年后依然存在(今天这样的试验通过条约被禁止)。外辐射带和环电流不这么稳定,原因是其粒子与地冕中的粒子的碰撞使得它们不断丧失。这说明在这里有一个不断产生新的等离子的机理。由于太阳风将被束缚在行星磁层中的等离子吹走,因此它们形成一个磁尾。磁尾可以延伸到行星后方非常远的地方。地球的磁尾一直延伸到月球轨道以外,而木星的磁尾估计一直延伸到土星轨道以外。磁尾中的等离子不断旋转,一直达到磁尾终端,然后回流到行星。在磁尾中也有没有物质流的中断区域,这些区域被称为波谷。这些区域的大小和位置会不断变化,有时会合并或者消失。有时磁尾甚至会反跳回来,在行星的磁层中释放大量高温和高电离的粒子。在太空中大多数磁场是由电流导致的。磁层里的电流实际上将地球本来的磁场扩展了许多,这些电流也决定远离地球的地方的磁场结构。在地磁场中的电荷倾向于环绕地磁场的偶极旋转。比如从上方看地球北极的话离子呈顺时针方向旋转,而电子则呈逆时针方向旋转,导致上述的环电流。环电流加强其外部的磁场,扩展地球的磁层,同时削弱其内部的磁场。在磁暴时环电流中的等离子数目增高,使得它变强,同时地球表面的磁场会被削弱1%至2%。磁场的变形和其中的电流的流动相互作用,相互影响,因此很难说双方哪个是起因,哪个是结果。除了这个水平的环流外还有在极地附近从远太空进入电离层,然后又被反弹回太空的电流(伯克兰流)。这个电流的细节还不很明确,还在研究中。由于电离层是有电阻的,因此这个电流会加热电离层,此外它会导致霍尔效应,加速磁层里的粒子,电离氧原子,使它进入环电流。通过分析不同电流所导致的磁场或者由不同磁场产生的电流可以将磁层分为以下五个部分:美国国家航空航天局发射了西弥斯卫星来研究外部太阳风对磁层的影响和磁亚暴的形成原理。假如行星际磁场的磁场方向是指向南方的话,那么磁层内的磁场方向与行星际磁场方向相反,这导致双方比较容易联系到一起,使得太阳风内的能量和物质比较容易进入磁层。其结果是磁尾扩展和变得不稳定。磁尾的结构会突然地和强烈地变化,导致所谓的磁亚暴。这个过程的原理还在研究中。一个推测是由于磁尾扩张,它对周边的太阳风形成了一个比较大的阻力,而周边的太阳风对它的压力也增高。最后等离子层中的磁场线被中断(磁场重联),远离地球的磁尾形成一个独立的环,被太阳风吹走(等离子体团),而离地球近的部分则反弹回来,加速其中的粒子,导致伯克兰流和明亮的极光。1970年代里卫星在离地心6.6地球半径的地方观测到了这个现象。在良好的条件下这个现象可以每天多次发生。磁亚暴不明显加强环电流。但是磁暴会显著地加强环电流。磁暴是在太阳日冕物质抛射或者耀斑发生后高速等离子体云冲击地球。假如这个时候行星际磁场的方向指向南方的话,这不但会使得磁层的边界向地球方向移动,而且会导致磁尾等离子体剧烈进入磁层。其结果是环电流中的等离子粒子数目剧增,其中相当多的一部分是电离层中极光现象释放出的氧离子。此外环电流被逼近地球,进一步加强了其粒子能量,暂时地改变地球附近的磁场,使得极光(及其电流系统)向赤道靠近。由于许多离子在短时间内通过电荷交流消失,因此磁场骚扰在一至三日内就消失了,但是环电流中的高能会持续相当长的时间。地球 · 地磁场 · 极光 · 极风 · 大气环流 · 喷射气流电离层 · 等离子层 · 磁层 · 磁层顶 · 磁层质点运动(英语:Magnetosphere particle motion) · 环状电流 · 范艾伦辐射带 · 白克兰电流 · 磁层鞘 · 磁层年表(英语:Magnetosphere chronology)列表(英语:List of satellites which have provided data on Earth's magnetosphere) · GEOTAIL(英语:Geotail) · WIND(英语:WIND (spacecraft)) · 极地(英语:Polar (satellite)) · IMAGE(英语:IMAGE) · 束群(英语:Cluster II (spacecraft)) · 双星计划 · 范艾伦探测器 · THEMIS(英语:THEMIS) · MMS(英语:Magnetospheric Multiscale Mission)(2015年)高频主动式极光研究项目 · 南半球极光雷达实验 · 超级双重极光雷达网络水星 · 木星 · 甘尼米德 · 土星 · 天王星 · 海王星行星环 (木星环 · 土星环 · 天王星环 · 海王星环) · 气体环 · 流量管

相关

  • 原杉藻原杉藻(学名:Prototaxites)为一属陆生的真菌,生存于志留纪晚期至泥盆纪晚期(4亿3千万年前 - 3亿6千万年前),其子实体形成类似树干的结构,直径达1米(3英尺),高度则可达8.8米(29英尺),由直径
  • 吸虫见内文吸虫(学名:Trematoda)是寄生虫的一种,为扁形动物门吸虫纲动物的总称,也称为瓜仁虫。一些吸虫也被称为二口虫(拉丁语:Distoma)。其名由来是因为它的口吸盘和腹吸盘都被认为是口
  • 医疗气体医疗气体供应可见于医疗院所,及其他多数的医疗设施。各部门使用的必要医疗气体,以气体管供应之,其中包含:气体供应系统由中央或系统本身的警报器监控。医疗院所及设施的各供气
  • 杂技杂技是多种高难度表演形式的通称,其中包括用手抛扔道具的丢掷技、平衡技巧、空中技巧、跳跃技巧、柔身术等等。传统行走江湖卖艺的表演,常是杂技、武术、魔术、马戏(驯兽)等表演
  • 金巴利金巴利(意大利语:Campari)是一款力娇酒,起源于意大利,根据出售国家不同,起酒精浓度有多个版本,包括20.5%、21%、25%及28%。金巴利使用多种草药和水果酿制,包括厚叶橙(英语:Citrus myrt
  • 俄罗斯联邦航天局name = 'Aero', description = '航空太空科技(航空航天科技)', content = {{ type = 'text', text = [=[本页面没有类似于NoteTA的数量限制。 请自行修改分类名。在NoteTA样板
  • 彼得·雷文彼得·汉密尔顿·雷文(英语:Peter Hamilton Raven,1936年6月13日-),美国植物学家和环保主义者,在密苏里植物园长期担任主任和名誉主席。1936年6月13日出生于中国上海,他的父母是美国
  • 求偶求偶(英语:courtship)或求爱是指人与人在订婚、结婚或建立双方一致认同的、更为持久的关系之前的关系的阶段。在求偶期间,情侣会相互了解对方,并决定是否订婚或建立对双方关系的
  • 寄多罗寄多罗一世,大月氏王,勇武非凡。后为匈奴所逐,向西迁徙,建立寄多罗王朝(英语:Kidarites)。他可能是匈尼特人,匈奴的后裔。《北史》卷九十七 列传第八十五:
  • 科学转化医学期刊《科学转化医学》(英语:Science Translational Medicine、科学转译医学)为一跨领域研究性质的医学期刊,由美国科学促进会于2009年10月创办。本期刊主要涵盖对于人类疾病在基础科