概率公理

✍ dations ◷ 2024-11-05 20:32:02 #概率公理
概率公理(英语:Probability axioms)是概率论的公理,任何事件发生的概率的定义均满足概率公理。因其发明者为安德烈·柯尔莫果洛夫,也被人们熟知为柯尔莫果洛夫公理(Kolmogorov axioms)。某个事件 E {displaystyle E} 的概率 P ( E ) {displaystyle P(E)} 是定义在“全体”(universe)或者所有可能基础事件的样本空间 Ω {displaystyle Omega } 时,概率 P {displaystyle P} 必须满足以下柯尔莫果洛夫公理。也可以说,概率可以被解释为定义在样本空间的子集的σ代数上的一个测度,那些子集为事件,使得所有集的测度为 1 {displaystyle 1} 。这个性质很重要,因为这里提出条件概率的自然概念。对于每一个非零概率A都可以在空间上定义另外一个概率:这通常被读作“给定A时B的概率”。如果给定A时B的条件概率与B的概率相同,则A与B被称为是独立的。当样本空间是有限或者可数无限时,概率函数也可以以基本事件 { e 1 } , { e 2 } , . . . {displaystyle {e_{1}},{e_{2}},...} 定义它的值,这里 Ω = { e 1 , e 2 , . . . } {displaystyle Omega ={e_{1},e_{2},...}} 。假设我们有一个基础集 Ω {displaystyle Omega } ,其子集的集合 F {displaystyle {mathfrak {F}}} 为σ代数,和一个给 F {displaystyle {mathfrak {F}}} 的元素指定一个实数的函数 P {displaystyle P} 。 F {displaystyle {mathfrak {F}}} 的元素是 Ω {displaystyle Omega } 的子集,称为“事件”。即,任一事件的概率都可以用 0 {displaystyle 0} 到 1 {displaystyle 1} 区间上的一个实数来表示。即,整体样本集合中的某个基本事件发生的概率为1。更加明确地说,在样本集合之外已经不存在基本事件了。这在一些错误的概率计算中经常被小看;如果你不能准确地定义整个样本集合,那么任意子集的概率也不可能被定义。即,不相交子集的并的事件集合的概率为那些子集的概率的和。这也被称为是σ可加性。如果存在子集间的重叠,这一关系不成立。如想通过代数了解柯尔莫果洛夫的方法,请参照随机变量代数。从柯尔莫果洛夫公理可以推导出另外一些对计算概率有用的法则。这一关系给出了贝叶斯定理。以此可以得出A和B是独立的当且仅当

相关

  • 低血镁低血镁症(Hypomagnaesemia)是描述血液中的镁离子含量低于正常值的现象。正常人体内的血镁约介于 1.7–2.2 mg/dL 之间,如果血镁值低于 1.7 mg/dL(0.7 mmol/L)就是低血镁症。症
  • 吗氯贝胺吗氯贝胺(商品名也作Amira、Aurorix、Clobemix、Depnil或Manerix)是主要用于治疗抑郁症和社交焦虑的单胺氧化酶A(RIMA)药物的可逆抑制剂。它在美国不被允许使用,但在其它西方国家
  • 新兴技术新兴技术(Emerging technologies)是一些普遍认为可以改变现状的技术,新兴技术多半是新的技术,不过也有一些较早期出现,但仍有争议的技术,或是有潜力,但目前相对发展不多的技术,例如
  • 兰金温标兰氏度(兰金,Rankine)是一个热力学温度单位。可以理解为是以绝对零度为计算起点的华氏温度。由英国工程师及物理学家威廉·约翰·麦夸恩·兰金在1859年提出,因而得名。现在已经
  • PFR反应器的外观反应器的内部剖视图化学反应器(英语:chemical reactor)是化工生产或实验上进行化学反应的装置,简称反应器,在工业上亦有工业反应器的别称。反应器主要功能是控制反应
  • 莫尔比昂省莫尔比昂省(法语:Morbihan,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentiu
  • 原始印欧人庞提克大草原高加索地区东亚东欧南欧庞提克大草原北方/东方大草原欧洲地区南亚地区西伯利亚大草原欧洲高加索地区印度印度-雅利安民族伊朗民族欧洲民族东亚印欧民族欧洲民族
  • 里卡多·米莱迪里卡多·米莱迪-道(西班牙语:Ricardo Miledi y Dau,1927年9月15日-2017年12月18日)是墨西哥神经生物学家。里卡多·米莱迪于1927年9月15日出生于墨西哥,1955年获得墨西哥国立自治
  • 近交衰退近交衰退(英语:Inbreeding depression)是指一个种群内因近亲繁殖而导致其生物适应度下降的情况。种群生物适应度指的是一个生物生存及持续传播其遗传物质的能力。近交衰退常由
  • 贺卡问候卡是人们在遇到特定的日期或事件的时候互相表示问候的一种卡片,用于喜庆的又称贺卡。人们通常赠送贺卡的日子包括生日、圣诞、元旦、新春、母亲节、父亲节、情人节等日子