朗斯基行列式

✍ dations ◷ 2025-04-04 00:04:36 #微分方程,行列式,波兰科技

在数学中,朗斯基行列式(Wronskian)名自波兰数学家约瑟夫·侯恩·朗斯基,是用于计算微分方程的解空间的函数。

对于给定的 个 次连续可微函数,、...、,它们的朗斯基行列式 为:

行列式的第 行是、...、 各函数的 次导数。组成这个行列式的 阶方阵也称作这 个函数的基本矩阵。

在解线性微分方程时,朗斯基行列式可以用阿贝尔恒等式来计算。

朗斯基行列式可以用来确定一组函数在给定区间上的线性相关性。

对于 个 次连续可微函数 、...、,它们的朗斯基行列式  :

定理:

如果、...、 在一個區間 上線性相關,則 在區間 上恆等於零。

也就是说,如果在某些点上 不等于零,则 、...、 线性无关

注意,若 在区间 上恒等于零,函数组不一定线性相关。

考虑 阶线性微分方程:

其中 a 1 ( t ) ,   a 2 ( t ) ,   ,   a n ( t ) ,   f ( t ) {\displaystyle a_{1}(t),\ a_{2}(t),\ \cdots ,\ a_{n}(t),\ f(t)} ,] 上的连续函数。并考虑 f ( t ) = 0 {\displaystyle f(t)=0} 阶齐次线性微分方程的情形:

对于一组给定的初始值:

方程 (1) 有唯一解 x = ϕ ( t ) {\displaystyle x=\phi (t)} 个 (2) 的解的和仍然是 (2) 的解,因此 (2) 的解集构成一个线性空间,称为 (2) 的解空间。

如果 、...、 在一个区间 上线性相关,则存在不全为零的系数 c 1 ,   c 2   ,   c n {\displaystyle c_{1},\ c_{2}\ \cdots ,\ c_{n}} ,] 上的任意 ,

因为“微分”是线性算子,所以这个等式可以“延伸”到n-1阶导数。故有以下方程组:

c 1 ,   c 2   ,   c n {\displaystyle c_{1},\ c_{2}\ \cdots ,\ c_{n}} 元齐次线性方程组,由于这个方程有非零解,系数矩阵的行列式 = 0。

进一步可以证明, 要么在区间 上恒等于零,要么处处不为零(没有零根)。于是可以证明 (2) 有 个线性无关的解,并且它们线性张成的空间就是 (2) 的解空间。所以, (2) 的解空间是一个 维线性空间。 (2) 一组 个线性无关的解称作它的一个基本解组。

1. 考虑三个函数:1、和,在任意一个区间上,他们的朗斯基行列式是:

不等于零,因此,这三个函数在任一个区间上都是线性无关的。

2.考虑另三个函数:1、和2+3,在任意一个区间上,他们的朗斯基行列式是:

事实上三者线性相关。

3.上面已经提到,朗斯基行列式等于零的函数组不一定线性相关。下面是一个反例:考虑两个函数,和||,即的绝对值。计算两者的朗斯基行列式

他们的朗斯基行列式恒等于零,但两者显然线性无关。

相关

  • 橡胶橡胶是一种有弹性的聚合物。橡胶可以从一些植物的树汁中取得,也可以是人造的,两者皆有相当多的应用及产品,例如轮胎、垫圈等,遂成为重要经济作物。橡胶的种植主要集中在东南亚地
  • 华生约翰·布罗德斯·华生(英语:John B. Watson,1878年1月9日-1958年9月25日)是一位美国心理学家,通过动物行为研究而创立了心理学行为主义学派,强调心理学是以客观的态度去研究外在可
  • 博恩霍尔姆岛博恩霍尔姆岛(丹麦语:Bornholm)是波罗的海西南部的一个岛屿,北望瑞典,南望波兰,历史上曾由丹麦和瑞典交替统治,现属丹麦管辖,并且是丹麦领土地理上的极东点。面积588平方公里,人口约
  • 轮班工作睡眠紊乱轮班工作睡眠紊乱(Shift work sleep disorder,简称SWSD)是生理节奏睡眠紊乱的一种,患者通常为因需轮班工作而经常转换工作和睡眠时间、或长期于非日间工作的人。这些对睡眠规律
  • 利尔·皮普古斯塔夫·伊莱贾·奥尔(Gustav Elijah Åhr,1996年11月1日-2017年11月15日),艺名利尔·皮普(Lil Peep),是美国一名饶舌歌手和歌手。他被认为是引领后情绪摇滚复兴的重要艺术家之一,
  • 苏联最高苏维埃苏联主题苏维埃社会主义共和国联盟最高苏维埃(俄语:Верховный Совет Союза Советских Социалистических Республик),简
  • 奥诺雷·德·巴尔扎克奥诺雷·德·巴尔扎克(法语:Honoré de Balzac,1799年5月20日-1850年8月18日),原名奥诺雷·巴尔扎克(Honoré Balzac),法国19世纪著名作家,法国现实主义文学成就最高者之一。他创作的
  • 正则化 (数学)在数学与计算机科学中,尤其是在机器学习和逆问题领域中,正则化(英语:regularization)是指为解决适定性问题或过拟合而加入额外信息的过程。在机器学习和逆问题的优化过程中,正则项
  • 台北捷运321型电联车台北捷运321型电联车,简称C321型电联车,是台北捷运营运的直流通勤型电联车,属于高运量类型车种,目前服务于台北捷运 板南线。这款车经由德国西门子交通集团制造,成为台北捷运第二
  • 黄花蝠属黄花蝠属(黄花蝠),哺乳纲、翼手目、叶口蝠科的一属,而与黄花蝠属(黄花蝠)同科的动物尚有花蝠属(古巴花蝠)、狭叶蝠属(狭叶蝠)等之数种哺乳动物。