在组合数学中,伯特兰投票问题是指,在一场选举中候选人A得到了p张选票,而候选人得到了q张选票(p>q),那么在整个点票过程中A的票数都严格大于B的概率是多少。这个问题的答案是
这个结果首次由W. A. Whitworth于1878年发布,但最终以在1887年重新发现这个问题的约瑟·伯特兰的名字命名。
假设有5名选民,其中3名候选人投票给,2名候选人投票给(即 = 3, = 2), 则投票顺序有以下十种可能性:
假设投票顺序为 ,则点票过程中点完每一票的结果为:
对于每一列(即点完每一票后), 的票数始终大于的票数,因此的票数始终严格领先于而对于的顺序,随着选举的进行,选票总数为:
对于这个投票顺序, 在第四次投票后与并列,因此并不总是严格地领先于在10个可能的顺序中,只有和两个顺序满足总是领先于 因此,始终严格领先的概率为
这与定理得出的 个整数上的随机游走数量,从坐标原点开始到 点终止,且不到达负数的范围。假设 和 具有相同的奇偶性,且 为投票问题中的较大数 , 为两候选人票数之差 ,即可得到该问题的结果。当 且 为偶数时,可以通过卡塔兰数 确定结果。