首页 >
共形场论
✍ dations ◷ 2024-12-23 00:49:05 #共形场论
共形场论 (conformal field theory, CFT) ,是在共形变换下不变的量子场论。在二维情况下,有一个局部共形变换的无限维代数,共形场论有时可以精确求解或分类。共形场论在凝聚态物理学、统计力学、量子统计力学以及弦论中有重要应用。统计系统在热力学临界点、凝聚态系统在量子临界点通常是共形不变的(临界现象)。尽管标度不变的量子场论有可能不是共形不变的,但这样的例子极少。因此,在量子场论中这两个术语常常当作同义词。事实上标度对称群比共形对称群小。在一些特殊情况下,由标度不变性可以推出共形不变性,例如二维的幺正紧致共形场论。二维共形场论有两种:欧几里得型和洛伦兹型。前者用于统计力学,而后者用于量子场论。可以通过威克转动把二者联系起来。二维共形场论在无限维对称群下不变。例如,考虑黎曼球面上的共形场论。其共形群为莫比乌斯变换,同构于有限维的PSL(2,C)。但是,无穷小共形变换组成了一个无限维代数,称为Witt代数,这无限个共形变换在
C
{displaystyle mathbb {C} }
上没有整体的逆。生成元用整数n来标记L
n
=
1
2
π
i
∮
z
=
0
T
z
z
z
n
+
1
d
z
{displaystyle L_{n}={frac {1}{2pi i}}oint _{z=0}{T_{zz}z^{n+1}dz}}其中
T
z
z
{displaystyle T_{zz}}
是该理论的能量动量张量的无迹部分的全纯部分。例如,对自由标量场T
z
z
=
1
2
(
∂
z
ϕ
)
2
{displaystyle T_{zz}={frac {1}{2}}(partial _{z}phi )^{2}}大多数共形场论量子化后会出现共形反常,又称魏尔(Weyl)反常。这导致非平凡中心荷的出现,Witt代数扩展成维拉宿代数。这个对称性使我们能够对二维共形场论进行更加细致的分类,这在更高维中是做不到的。尤其是,可以把一个理论中的primary operator的谱与中心荷的值c对应起来。物理态组成的希尔伯特空间是与一个中心荷的值相对应的维拉宿代数的幺正模。稳定性要求哈密顿算子的能谱非负。令人感兴趣的模是维拉宿代数的最高权重模。一手征场是一全纯场W(z),且在维拉宿代数作用下之变换为类似地,稍作修改就得到反手征场。
Δ
{displaystyle Delta }
称为手征场W的共形权重。此外,亚历山大·泽莫洛德奇科夫(Alexander Zamolodchikov)曾证明存在一函数 C,在二维量子场论的重整化群流作用下单调递减,且等于一个2维共形场论的中心荷。此定理称为泽莫罗德奇科夫C定理,告诉我们二维的重整化群流是不可逆的。很多时候,我们不仅对算子感兴趣,也对真空态感兴趣。除非c=0,否则不存在状态能够保持全部无穷维对称性。我们能想到的最好的情况是在
L
−
1
,
L
0
,
L
1
,
L
i
(
i
>
1
)
{displaystyle L_{-1},L_{0},L_{1},L_{i}(i>1)}
下不变。这包含了莫比乌斯子群。共形群的其余部分是自发破缺的。二维共形场论在统计力学中发挥了重要作用,能够描述许多格点模型的临界点。维数d>2时,共形群局部同构于
S
O
(
d
+
1
,
1
)
{displaystyle {mathcal {SO}}(d+1,1)}
或
S
O
(
d
,
2
)
{displaystyle {mathcal {SO}}(d,2)}
。更高维的共形场论在AdS/CFT对偶中非常重要,即反德西特空间(AdS)中的引力理论等价于AdS边界上的共形场论。著名的例子有d=4,N=4超对称杨-米尔斯理论,与AdS5 × S5上的IIB型弦理论对偶;d=3,N=6超陈-西蒙斯理论,与AdS4 × S7上的M理论对偶。(“超”代表超对称,d是边界的时空维数)共形对称性是在标度变化以及具有以下关系的特殊共形变换下的对称性[
P
μ
,
P
ν
]
=
0
,
{displaystyle =0,}[
D
,
K
μ
]
=
−
K
μ
,
{displaystyle =-K_{mu },}[
D
,
P
μ
]
=
P
μ
,
{displaystyle =P_{mu },}[
K
μ
,
K
ν
]
=
0
,
{displaystyle =0,}[
K
μ
,
P
ν
]
=
η
μ
ν
D
−
i
M
μ
ν
{displaystyle =eta _{mu nu }D-iM_{mu nu }}其中
P
{displaystyle P}
是平移生成元,
D
{displaystyle D}
是标度变换生成元。
相关
- 生化武器生化武器(Biochemical Weapon)包括生物武器和化学武器两种,是指以细菌、病毒、毒素等使人、动物、植物致病或死亡的物质材料制成的武器,它们都属于大规模杀伤性武器。生物武器过
- 伙友骑兵伙友骑兵(古希腊语:ἑταῖροι;hetairoi),又译伙伴骑兵或马其顿禁卫骑兵,伙友骑兵是马其顿军队中的精锐骑兵,源于马其顿王国的国王骑兵卫队,在腓力二世的扩充改良下,成为马其顿军
- 主观主义主观唯心主义是唯心主义哲学的基本形式之一,与客观唯心主义并称。主观唯心主义把个人的主观精神如感觉、经验、心灵、意识、观念和意志等,看作是世界上一切事物产生和存在的根
- 介词介词、介系词(英语:adposition)是语法中定义的一种词汇,用来描述字词之间的时间、空间或文法关系。可以区分为前置介词(简称前置词,preposition)、后置介词(postposition)和框式介词(c
- 亮盖灵芝蕈伞平版状蕈柄裸露异养腐生真菌亮盖灵芝(学名:Ganoderma lucidum),是灵芝属下的一个种。在《神农本草经》中将灵芝依色泽的不同划分成赤芝、黄芝、白芝、青芝、黑芝、紫芝六种
- 470110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310
- 郎永淳郎永淳(1971年7月23日-),出生于江苏省徐州市睢宁县,中国电视节目主持人,曾担任中国中央电视台新闻联播主持人,现为找钢网高级副总裁兼首席战略官。1971年7月23日,郎永淳出生于江苏省
- 杨焕明杨焕明(1952年10月6日-),中国基因组学科学家,曾任中国科学院北京基因组研究所所长,现任华大基因理事长。1952年出生于浙江温州乐清。1975年至1978年,就读于杭州大学生物系。1978年
- 沈元壤沈元壤(1935年3月-),美籍华裔物理学家,上海人,伯克利加州大学荣休教授,复旦大学特聘教授。以其在非线性光学领域的研究而知名。沈元壤出生于上海,1952年毕业于上海市南洋模范中学。
- abbr class=abbr title=R37: 刺激呼吸系统R37/abbr警示性质标准词(英语:Risk Phrases,简写:R-phrases)是于《欧联指导标准67/548/EEC 附录III: 有关危险物品与其储备的特殊风险性质》里定义。该列表被集中并再出版于指导标准2001/