首页 >
共形场论
✍ dations ◷ 2025-09-12 21:57:11 #共形场论
共形场论 (conformal field theory, CFT) ,是在共形变换下不变的量子场论。在二维情况下,有一个局部共形变换的无限维代数,共形场论有时可以精确求解或分类。共形场论在凝聚态物理学、统计力学、量子统计力学以及弦论中有重要应用。统计系统在热力学临界点、凝聚态系统在量子临界点通常是共形不变的(临界现象)。尽管标度不变的量子场论有可能不是共形不变的,但这样的例子极少。因此,在量子场论中这两个术语常常当作同义词。事实上标度对称群比共形对称群小。在一些特殊情况下,由标度不变性可以推出共形不变性,例如二维的幺正紧致共形场论。二维共形场论有两种:欧几里得型和洛伦兹型。前者用于统计力学,而后者用于量子场论。可以通过威克转动把二者联系起来。二维共形场论在无限维对称群下不变。例如,考虑黎曼球面上的共形场论。其共形群为莫比乌斯变换,同构于有限维的PSL(2,C)。但是,无穷小共形变换组成了一个无限维代数,称为Witt代数,这无限个共形变换在
C
{displaystyle mathbb {C} }
上没有整体的逆。生成元用整数n来标记L
n
=
1
2
π
i
∮
z
=
0
T
z
z
z
n
+
1
d
z
{displaystyle L_{n}={frac {1}{2pi i}}oint _{z=0}{T_{zz}z^{n+1}dz}}其中
T
z
z
{displaystyle T_{zz}}
是该理论的能量动量张量的无迹部分的全纯部分。例如,对自由标量场T
z
z
=
1
2
(
∂
z
ϕ
)
2
{displaystyle T_{zz}={frac {1}{2}}(partial _{z}phi )^{2}}大多数共形场论量子化后会出现共形反常,又称魏尔(Weyl)反常。这导致非平凡中心荷的出现,Witt代数扩展成维拉宿代数。这个对称性使我们能够对二维共形场论进行更加细致的分类,这在更高维中是做不到的。尤其是,可以把一个理论中的primary operator的谱与中心荷的值c对应起来。物理态组成的希尔伯特空间是与一个中心荷的值相对应的维拉宿代数的幺正模。稳定性要求哈密顿算子的能谱非负。令人感兴趣的模是维拉宿代数的最高权重模。一手征场是一全纯场W(z),且在维拉宿代数作用下之变换为类似地,稍作修改就得到反手征场。
Δ
{displaystyle Delta }
称为手征场W的共形权重。此外,亚历山大·泽莫洛德奇科夫(Alexander Zamolodchikov)曾证明存在一函数 C,在二维量子场论的重整化群流作用下单调递减,且等于一个2维共形场论的中心荷。此定理称为泽莫罗德奇科夫C定理,告诉我们二维的重整化群流是不可逆的。很多时候,我们不仅对算子感兴趣,也对真空态感兴趣。除非c=0,否则不存在状态能够保持全部无穷维对称性。我们能想到的最好的情况是在
L
−
1
,
L
0
,
L
1
,
L
i
(
i
>
1
)
{displaystyle L_{-1},L_{0},L_{1},L_{i}(i>1)}
下不变。这包含了莫比乌斯子群。共形群的其余部分是自发破缺的。二维共形场论在统计力学中发挥了重要作用,能够描述许多格点模型的临界点。维数d>2时,共形群局部同构于
S
O
(
d
+
1
,
1
)
{displaystyle {mathcal {SO}}(d+1,1)}
或
S
O
(
d
,
2
)
{displaystyle {mathcal {SO}}(d,2)}
。更高维的共形场论在AdS/CFT对偶中非常重要,即反德西特空间(AdS)中的引力理论等价于AdS边界上的共形场论。著名的例子有d=4,N=4超对称杨-米尔斯理论,与AdS5 × S5上的IIB型弦理论对偶;d=3,N=6超陈-西蒙斯理论,与AdS4 × S7上的M理论对偶。(“超”代表超对称,d是边界的时空维数)共形对称性是在标度变化以及具有以下关系的特殊共形变换下的对称性[
P
μ
,
P
ν
]
=
0
,
{displaystyle =0,}[
D
,
K
μ
]
=
−
K
μ
,
{displaystyle =-K_{mu },}[
D
,
P
μ
]
=
P
μ
,
{displaystyle =P_{mu },}[
K
μ
,
K
ν
]
=
0
,
{displaystyle =0,}[
K
μ
,
P
ν
]
=
η
μ
ν
D
−
i
M
μ
ν
{displaystyle =eta _{mu nu }D-iM_{mu nu }}其中
P
{displaystyle P}
是平移生成元,
D
{displaystyle D}
是标度变换生成元。
相关
- 中世中世纪(公元5世纪-公元15世纪)是欧洲历史三大传统划分(“古典时代”、“中世纪”和“近现代”)的一个中间时期,始于西罗马帝国(公元476年)的灭亡,终于东罗马帝国(公元1453年)的灭亡,最
- 神经科学与现象学神经现象学(Neurophenomenology ),是一种以实用的方式解决意识难题的科学研究思路。它将神经科学与现象学结合起来,在强调人类心灵的具身状态的基础上对经验、心灵和意识进行研
- 乌菲兹美术馆乌菲兹美术馆(意大利语:Galleria degli Uffizi,意大利语发音:)是在意大利佛罗伦斯最有历史及最有名的一座艺术博物馆。乌菲兹美术馆的兴建始于1560年。这里一开始是乔尔乔·瓦萨
- 黏度黏度(英语:Viscosity),是黏性的程度,是材料的首要功能,也称动力粘度、粘(滞)性系数、内摩擦系数。不同物质的黏度不同,例如在室温(25℃)及常压(1巴)下,空气的黏度为18.5μPa·s,大约比在相
- 对于犹太人大屠杀的否认庇隆主义 国家工团主义 民族社会主义 民族无政府主义 民族布尔什维克主义纳粹党 前沿交叉 官方全国战线 第三位置组织 新力量 国际第三位置法西斯象征 新法西斯主义 新纳粹
- 乌里扬诺夫斯克州乌里扬诺夫斯克州(俄语:Улья́новская о́бласть,罗马化:Ulyanovskaya oblast)是俄罗斯联邦主体之一,属伏尔加联邦管区。位于东欧大草原北部边缘,伏尔加河在中部
- 鞑靼人.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
- 布兰克特姐妹勃朗特三姊妹(英语:Brontë family or The Brontës),是三位英国著名文学女作家,并且是亲生三姊妹,分别是:1847年,夏洛蒂的《简·爱》,艾米莉的《呼啸山庄》,安妮的《荒野庄园的房客》
- 气体常数气体常数(又称理想气体常数、普适气体常数,符号为 R {\displaystyle R} )是一个在物态方程中连系各个热力学函数的物理常数。理想
- 精液过剩症精液过剩症(Hyperspermia)为一医学术语,当一位男性有异常大的射精(或精液)量时谓之。精液过剩症的男性通常比没有此症状的男性有较高的性欲。精液过剩症与精液减少症(hypospermia)