首页 >
共形场论
✍ dations ◷ 2025-04-25 07:07:37 #共形场论
共形场论 (conformal field theory, CFT) ,是在共形变换下不变的量子场论。在二维情况下,有一个局部共形变换的无限维代数,共形场论有时可以精确求解或分类。共形场论在凝聚态物理学、统计力学、量子统计力学以及弦论中有重要应用。统计系统在热力学临界点、凝聚态系统在量子临界点通常是共形不变的(临界现象)。尽管标度不变的量子场论有可能不是共形不变的,但这样的例子极少。因此,在量子场论中这两个术语常常当作同义词。事实上标度对称群比共形对称群小。在一些特殊情况下,由标度不变性可以推出共形不变性,例如二维的幺正紧致共形场论。二维共形场论有两种:欧几里得型和洛伦兹型。前者用于统计力学,而后者用于量子场论。可以通过威克转动把二者联系起来。二维共形场论在无限维对称群下不变。例如,考虑黎曼球面上的共形场论。其共形群为莫比乌斯变换,同构于有限维的PSL(2,C)。但是,无穷小共形变换组成了一个无限维代数,称为Witt代数,这无限个共形变换在
C
{displaystyle mathbb {C} }
上没有整体的逆。生成元用整数n来标记L
n
=
1
2
π
i
∮
z
=
0
T
z
z
z
n
+
1
d
z
{displaystyle L_{n}={frac {1}{2pi i}}oint _{z=0}{T_{zz}z^{n+1}dz}}其中
T
z
z
{displaystyle T_{zz}}
是该理论的能量动量张量的无迹部分的全纯部分。例如,对自由标量场T
z
z
=
1
2
(
∂
z
ϕ
)
2
{displaystyle T_{zz}={frac {1}{2}}(partial _{z}phi )^{2}}大多数共形场论量子化后会出现共形反常,又称魏尔(Weyl)反常。这导致非平凡中心荷的出现,Witt代数扩展成维拉宿代数。这个对称性使我们能够对二维共形场论进行更加细致的分类,这在更高维中是做不到的。尤其是,可以把一个理论中的primary operator的谱与中心荷的值c对应起来。物理态组成的希尔伯特空间是与一个中心荷的值相对应的维拉宿代数的幺正模。稳定性要求哈密顿算子的能谱非负。令人感兴趣的模是维拉宿代数的最高权重模。一手征场是一全纯场W(z),且在维拉宿代数作用下之变换为类似地,稍作修改就得到反手征场。
Δ
{displaystyle Delta }
称为手征场W的共形权重。此外,亚历山大·泽莫洛德奇科夫(Alexander Zamolodchikov)曾证明存在一函数 C,在二维量子场论的重整化群流作用下单调递减,且等于一个2维共形场论的中心荷。此定理称为泽莫罗德奇科夫C定理,告诉我们二维的重整化群流是不可逆的。很多时候,我们不仅对算子感兴趣,也对真空态感兴趣。除非c=0,否则不存在状态能够保持全部无穷维对称性。我们能想到的最好的情况是在
L
−
1
,
L
0
,
L
1
,
L
i
(
i
>
1
)
{displaystyle L_{-1},L_{0},L_{1},L_{i}(i>1)}
下不变。这包含了莫比乌斯子群。共形群的其余部分是自发破缺的。二维共形场论在统计力学中发挥了重要作用,能够描述许多格点模型的临界点。维数d>2时,共形群局部同构于
S
O
(
d
+
1
,
1
)
{displaystyle {mathcal {SO}}(d+1,1)}
或
S
O
(
d
,
2
)
{displaystyle {mathcal {SO}}(d,2)}
。更高维的共形场论在AdS/CFT对偶中非常重要,即反德西特空间(AdS)中的引力理论等价于AdS边界上的共形场论。著名的例子有d=4,N=4超对称杨-米尔斯理论,与AdS5 × S5上的IIB型弦理论对偶;d=3,N=6超陈-西蒙斯理论,与AdS4 × S7上的M理论对偶。(“超”代表超对称,d是边界的时空维数)共形对称性是在标度变化以及具有以下关系的特殊共形变换下的对称性[
P
μ
,
P
ν
]
=
0
,
{displaystyle =0,}[
D
,
K
μ
]
=
−
K
μ
,
{displaystyle =-K_{mu },}[
D
,
P
μ
]
=
P
μ
,
{displaystyle =P_{mu },}[
K
μ
,
K
ν
]
=
0
,
{displaystyle =0,}[
K
μ
,
P
ν
]
=
η
μ
ν
D
−
i
M
μ
ν
{displaystyle =eta _{mu nu }D-iM_{mu nu }}其中
P
{displaystyle P}
是平移生成元,
D
{displaystyle D}
是标度变换生成元。
相关
- 牛海绵状脑病牛海绵状脑病(英语:bovine spongiform encephalopathy,缩写:BSE),俗称疯牛症(mad cow disease),是由传染因子引起,属于牛的一种进行性神经系统的传染性疾病,此疾病是一种传染性海绵状脑
- 焊料焊料(英语:Solder),通常为锡的合金,故又称焊锡,为低熔点合金(英语:Fusible alloy),在焊接的过程中被用来接合金属零件, 熔点需低于被焊物的熔点。一般所称的焊料为软焊料,熔点在摄氏90~4
- HE染色苏木精-伊红染色,又称苏木素-伊红染色或“H&E染色”(hematoxylin and eosin stain、H&E stain),是组织学最常用的染色方法之一。这种染色方法的基础是组织结构对不同染料的结合
- 组织蛋白组蛋白(英语:histone)是真核生物体细胞染色质与原核细胞中的碱性蛋白质,和DNA共同组成核小体结构。它们是染色质的主要蛋白质组分,作为DNA缠绕的线轴,并在基因调控(英语:Regulation
- 盾形动物门盾形动物门(学名:Proarticulata),又名盾状动物门,是一个已经完全灭绝的动物门,由Mikhail Fedonkin(英语:Mikhail Fedonkin)在1985年所建立。它们是一类非常早期的两侧对称动物。其化
- 奈娥比尼俄伯(英语:Niobe),古希腊神话女性人物之一。父为坦塔罗斯。曾多次吹嘘其子女,后为勒托之子阿波罗所尽杀其子女而悲痛化为石头,后移至弗里吉亚之西皮洛斯山。其事迹常反映于相关
- 郑裕彤东亚图书馆郑裕彤东亚图书馆是多伦多大学的一个图书馆,它位于同属多伦多大学的罗伯兹图书馆八楼。这个图书馆是北美最重要的东亚研究方面的文献收藏之一,其中收藏有超过66万卷相关文献。
- 可能性概率,旧称几率,又称机率、机会率或或然率,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。概率常用来量化对于某些不确定命题的想法,命题一般会
- 楠梓区坐标:22°44′06″N 120°19′34″E / 22.734875°N 120.326193°E / 22.734875; 120.326193楠梓区(注音:ㄋㄢˊ ㄗˇ ㄑㄩ,英语:Nanzih/Nanzi/Nantz/Nantzu District;台湾话:.mw-p
- 检测2019冠状病毒病检测(英语:COVID-19 testing)是通过核酸或抗体等分子检测(英语:Molecular diagnostics)手段及CT断层成像等临床辅助手段,对人体是否感染2019冠状病毒或患有2019冠状