首页 >
共形场论
✍ dations ◷ 2025-06-28 05:27:31 #共形场论
共形场论 (conformal field theory, CFT) ,是在共形变换下不变的量子场论。在二维情况下,有一个局部共形变换的无限维代数,共形场论有时可以精确求解或分类。共形场论在凝聚态物理学、统计力学、量子统计力学以及弦论中有重要应用。统计系统在热力学临界点、凝聚态系统在量子临界点通常是共形不变的(临界现象)。尽管标度不变的量子场论有可能不是共形不变的,但这样的例子极少。因此,在量子场论中这两个术语常常当作同义词。事实上标度对称群比共形对称群小。在一些特殊情况下,由标度不变性可以推出共形不变性,例如二维的幺正紧致共形场论。二维共形场论有两种:欧几里得型和洛伦兹型。前者用于统计力学,而后者用于量子场论。可以通过威克转动把二者联系起来。二维共形场论在无限维对称群下不变。例如,考虑黎曼球面上的共形场论。其共形群为莫比乌斯变换,同构于有限维的PSL(2,C)。但是,无穷小共形变换组成了一个无限维代数,称为Witt代数,这无限个共形变换在
C
{displaystyle mathbb {C} }
上没有整体的逆。生成元用整数n来标记L
n
=
1
2
π
i
∮
z
=
0
T
z
z
z
n
+
1
d
z
{displaystyle L_{n}={frac {1}{2pi i}}oint _{z=0}{T_{zz}z^{n+1}dz}}其中
T
z
z
{displaystyle T_{zz}}
是该理论的能量动量张量的无迹部分的全纯部分。例如,对自由标量场T
z
z
=
1
2
(
∂
z
ϕ
)
2
{displaystyle T_{zz}={frac {1}{2}}(partial _{z}phi )^{2}}大多数共形场论量子化后会出现共形反常,又称魏尔(Weyl)反常。这导致非平凡中心荷的出现,Witt代数扩展成维拉宿代数。这个对称性使我们能够对二维共形场论进行更加细致的分类,这在更高维中是做不到的。尤其是,可以把一个理论中的primary operator的谱与中心荷的值c对应起来。物理态组成的希尔伯特空间是与一个中心荷的值相对应的维拉宿代数的幺正模。稳定性要求哈密顿算子的能谱非负。令人感兴趣的模是维拉宿代数的最高权重模。一手征场是一全纯场W(z),且在维拉宿代数作用下之变换为类似地,稍作修改就得到反手征场。
Δ
{displaystyle Delta }
称为手征场W的共形权重。此外,亚历山大·泽莫洛德奇科夫(Alexander Zamolodchikov)曾证明存在一函数 C,在二维量子场论的重整化群流作用下单调递减,且等于一个2维共形场论的中心荷。此定理称为泽莫罗德奇科夫C定理,告诉我们二维的重整化群流是不可逆的。很多时候,我们不仅对算子感兴趣,也对真空态感兴趣。除非c=0,否则不存在状态能够保持全部无穷维对称性。我们能想到的最好的情况是在
L
−
1
,
L
0
,
L
1
,
L
i
(
i
>
1
)
{displaystyle L_{-1},L_{0},L_{1},L_{i}(i>1)}
下不变。这包含了莫比乌斯子群。共形群的其余部分是自发破缺的。二维共形场论在统计力学中发挥了重要作用,能够描述许多格点模型的临界点。维数d>2时,共形群局部同构于
S
O
(
d
+
1
,
1
)
{displaystyle {mathcal {SO}}(d+1,1)}
或
S
O
(
d
,
2
)
{displaystyle {mathcal {SO}}(d,2)}
。更高维的共形场论在AdS/CFT对偶中非常重要,即反德西特空间(AdS)中的引力理论等价于AdS边界上的共形场论。著名的例子有d=4,N=4超对称杨-米尔斯理论,与AdS5 × S5上的IIB型弦理论对偶;d=3,N=6超陈-西蒙斯理论,与AdS4 × S7上的M理论对偶。(“超”代表超对称,d是边界的时空维数)共形对称性是在标度变化以及具有以下关系的特殊共形变换下的对称性[
P
μ
,
P
ν
]
=
0
,
{displaystyle =0,}[
D
,
K
μ
]
=
−
K
μ
,
{displaystyle =-K_{mu },}[
D
,
P
μ
]
=
P
μ
,
{displaystyle =P_{mu },}[
K
μ
,
K
ν
]
=
0
,
{displaystyle =0,}[
K
μ
,
P
ν
]
=
η
μ
ν
D
−
i
M
μ
ν
{displaystyle =eta _{mu nu }D-iM_{mu nu }}其中
P
{displaystyle P}
是平移生成元,
D
{displaystyle D}
是标度变换生成元。
相关
- 音叉音叉由弹性金属(多为钢)制成,末有一柄,两端分叉,型如拉丁字母‘U’。音叉拥有一固定的共振频率,受到敲击时则震动,在等待初始时的泛音列过去后,音叉发出的音响就具有固定的音高。一
- 中法兰克王国中法兰克王国(拉丁语:Francia media)为欧洲中世纪的一个国家。814年,查理曼去世,法兰克帝国随之分裂。843年,查理曼的三个孙子订立《凡尔登条约》,遵照查理在806年就已经规定了他死
- 胸在解剖学上,胸部在许多动物身体的其中一部分。人科动物(包括人类)的胸部位于颈部和腹部之间,由肋骨、脊椎和肩带骨骼所支撑。胸部同时有乳房部分,女性的乳房作哺乳之用,因此胸部也
- 东哥德人东哥特人(Ostrogoths),港、台译作东哥德人,是哥特人的一个分支,3世纪时曾在黑海北边建立一个帝国。5世纪末在意大利建立东哥特王国。东哥特人自波罗的海地区向南扩张,建起一个其幅
- 草原草原,是以草本植物为主,可为家畜、野生动物提供生存场所的地区。草原由大气、土壤、生物等共同作用形成。其中,大气温度、降水量占主导地位。发生在欧亚大陆内部,位于温带沙漠区
- 龙舌兰酒龙舌兰酒(西班牙文:Tequila),是墨西哥产、使用龙舌兰草的心(Piña,在植物学上,指的是这种植物的鳞茎部分)为原料所制造出的含酒精饮品,属蒸馏酒一类。通常提到龙舌兰酒时,可能意指的是
- 复分解反应复分解反应又称双置换反应,是由两种化合物,通过互相交换成分并生成两种新化合物的反应,模式为AB+CD→AD+CB。必发生在水溶液中,它是基本类型的化学反应之一。复分解都不是氧化还
- 查理士·凡而侬·波伊斯查尔斯·弗农·波伊斯爵士, FRS (英语:Sir Charles Vernon Boys,1855年3月15日-1944年3月30日),英国物理学家,以其精巧而新颖的实验留名后世。波伊斯发明了熔融石英纤维扭力弹簧,这
- BBC广播大楼BBC广播大楼(英语:Broadcasting House),是英国广播公司的总部所在地,位于伦敦的波特兰坊。广播大楼动工于1928年,在1932年完工。1932年3月15日,第一个在广播大楼制作的广播节目对外
- 喹喔啉喹喔啉( quinoxaline,benzopyrazine)是一种杂环化合物,化学式C8H6N2,由一个苯环与一个吡嗪环稠合而成。喹喔啉也可看做萘环的两个CH被N原子替换,这样的结构称为萘啶,其同分异构体还