粒子群优化

✍ dations ◷ 2025-12-02 05:00:44 #最优化算法,群集智能

粒子群优化(Particle Swarm Optimization, PSO),又称微粒群算法,是由 J. Kennedy 和 R. C. Eberhart 等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群符合 M. M. Millonas 在开发应用于人工生命(artificial life)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

PSO 算法最初是为了图形化地模拟鸟群优美而不可预测的运动。而通过对动物社会行为的观察,发现在群体中对信息的社会共享提供一个演化的优势,并以此作为开发算法的基础。通过加入近邻的速度匹配、并考虑了多维搜索和根据距离的加速,形成了 PSO 的最初版本。之后引入了惯性权重来更好的控制开发(exploitation)和探索(exploration),形成了标准版本。为了提高粒群算法的性能和实用性,中山大学、(英国)格拉斯哥大学等又开发了自适应(Adaptive PSO)版本和离散(discrete)版本

PSO 算法是基于群体的,根据对环境的适应度将群体中的个体移动到好的区域。然而它不对个体使用演化算子,而是将每个个体看作是 D 维搜索空间中的一个没有体积的微粒(点),在搜索空间中以一定的速度飞行,这个速度根据它本身的飞行经验和同伴的飞行经验来动态调整。第 i 个微粒表示为 Xi =(xi1, xi2, …, xiD) ,它经历过的最好位置(有最好的适应值)记为 Pi = (pi1, pi2, …, piD),也称为 pbest。在群体所有微粒经历过的最好位置的索引号用符号 g 表示,即 Pg,也称为 gbest 。微粒 i 的速度用 Vi = (vi1, vi2, …, viD) 表示。对每一代,它的第 d+1 维(1 ≤ d+1 ≤ D)根据如下方程进行变化:

       vid+1 = w∙vid+c1∙rand()∙(pid-xid)+c2∙Rand()∙(pgd-xid)        (1a)       xid+1 = xid+vid				              (1b)


其中w为惯性权重(inertia weight),c1和c2为加速常数(acceleration constants),rand() 和 Rand() 为两个在范围里变化的随机值。

此外,微粒的速度 Vi 被一个最大速度 Vmax 所限制。如果当前对微粒的加速导致它的在某维的速度 vid 超过该维的最大速度 vmax,d,则该维的速度被限制为该维最大速度 vmax,d

对公式(1a),第一部分为微粒先前行为的惯性,第二部分为“认知(cognition)”部分,表示微粒本身的思考;第三部分为“社会(social)”部分,表示微粒间的信息共享与相互合作。

“认知”部分可以由 Thorndike 的效应法则(law of effect)所解释,即一个得到加强的随机行为在将来更有可能出现。这里的行为即“认知”,并假设获得正确的知识是得到加强的,这样的一个模型假定微粒被激励着去减小误差。

“社会”部分可以由 Bandura 的替代强化(vicarious reinforcement)所解释。根据该理论的预期,当观察者观察到一个模型在加强某一行为时,将增加它实行该行为的几率。即微粒本身的认知将被其它微粒所模仿。

PSO 算法使用如下心理学假设:在寻求一致的认知过程中,个体往往记住自身的信念,并同时考虑同事们的信念。当其察觉同事的信念较好的时候,将进行适应性地调整。

标准 PSO 的算法流程如下:

PSO 参数包括:群体规模 m ,惯性权重 w ,加速常数 c1 和 c2 ,最大速度 Vmax,最大代数 Gmax

Vmax 决定在当前位置与最好位置之间的区域的分辨率(或精度)。如果 Vmax 太高,微粒可能会飞过好解,如果 Vmax 太小,微粒不能进行足够的探索,导致陷入局部优值。该限制有三个目的:防止计算溢出;实现人工学习和态度转变;决定问题空间搜索的粒度。

惯性权重w使微粒保持运动的惯性,使其有扩展搜索空间的趋势,有能力探索新的区域。

加速常数 c1 和 c2 代表将每个微粒推向 pbest 和 gbest 位置的统计加速项的权重。低的值允许微粒在被拉回来之前可以在目标区域外徘徊,而高的值导致微粒突然的冲向或者越过目标区域。

如果没有后两部分,即 c1 = c2 = 0,微粒将一直以当前的速度飞行,直到到达边界。由于它只能搜索有限的区域,将很难找到好的解。

如果没有第一部分,即 w = 0,则速度只取决于微粒当前的位置和它们历史最好位置 pbest 和 gbest ,速度本身没有记忆性。假设一个微粒位于全局最好位置,它将保持静止。而其它微粒则飞向它本身最好位置 pbest 和全局最好位置 gbest 的加权中心。在这种条件下,微粒群将统计的收缩到当前的全局最好位置,更象一个局部算法。

在加上第一部分后,微粒有扩展搜索空间的趋势,即第一部分有全局搜索的能力。这也使得w的作用为针对不同的搜索问题,调整算法全局和局部搜索能力的平衡。

如果没有第二部分,即 c1 = 0,则微粒没有认知能力,也就是“只有社会(social-only)”的模型。在微粒的相互作用下,有能力到达新的搜索空间。它的收敛速度比标准版本更快,但是对复杂问题,比标准版本更容易陷入局部优值点。

如果没有第三部分,即 c2 = 0,则微粒之间没有社会信息共享,也就是“只有认知(cognition-only)”的模型。因为个体间没有交互,一个规模为m的群体等价于m个单个微粒的运行。因而得到解的几率非常小。

收敛性的数学证明帮助了 PSO 的发展和应用, 但此内分析具有很大的局限性. 为 PSO 加入正交学习后,算法的全局收敛、收敛精度及鲁棒可靠性都得到了提高.

相关

  • 臭氧0.001962g/cm3(25 ℃)氧气臭氧(分子式为O3)是氧气(O2)的同素异形体,在常温下,它是一种有特殊臭味的无色气体。英文臭氧(Ozone)一词源自希腊语ozon,意为“嗅”。臭氧主要存在于距地球表
  • 苯甲醛苯甲醛(C6H5CHO)英文:Benzaldehyde,为苯的氢被醛基取代后形成的有机化合物。苯甲醛为最简单的,同时也是工业上最常为使用的芳醛。在室温下其为无色液体,具有特殊的杏仁气味。苯甲
  • 罗斯人罗斯人("Роусь", Рось, Русь, Русы),是一个古老民族,是乌克兰、俄罗斯和白罗斯的居民对他们的称呼。他们的出身和身份有很大的争议。一些俄罗斯学者,以及一些西
  • 位居全球第四这是一个汽车生产国家列表,基于世界汽车工业国际协会在2011年4月发布的数据。数据包括乘用车,轻型商用车,轻型客车,卡车,公共汽车和长途客车。单位(辆)
  • 鳞状细胞癌鳞状细胞癌(Squamous-cell carcinoma, SCC, SqCC),有时也被称之为表皮样癌(epidermoid carcinoma)或鳞状细胞上皮瘤(squamous cell epithelioma),是一类上皮组织细胞、鳞状细胞产生
  • 风帆帆,或称颿、风帆或船帆,是指帆船桅杆上利用风力的布篷。而使用风帆作为动力的船只则称为帆船。帆船可能不止一面船帆,船帆也并非仅仅顺风时才可以推进船只。通过船帆角度的变换
  • 彼得学院剑桥大学彼得学院(英语:Peterhouse, Cambridge) 始建于1284年,是剑桥大学建立最早的学院。彼得学院现有284名本科生,130名研究生和45名院士,是剑桥大学最小的学院。彼得学院的建
  • 洛桑会议洛桑会议在1932年6月16日至7月9日举行,是关于德国在第一次世界大战后的赔款问题。会议在瑞士的洛桑市举行,与会国包括德国、英国与法国。因为签订了凡尔赛条约,当时德国的政府
  • 慧济寺慧济寺,位于中国浙江舟山普陀山,坐落在佛顶山山巅的右上方,又称佛顶山寺。创建于明代。1907年大规模重修后,建成四殿、六楼、七宫。这些建筑雕梁画栋,工艺精致。慧济寺虽然修建较
  • 穆罕默德·乌尔德·阿卜杜勒-阿齐兹穆罕默德·乌尔德·阿卜杜勒-阿齐兹(阿拉伯语:محمد ولد عبد العزيز‎ ;1956年12月20日-),毛里塔尼亚前任总统。1956年,生于毛塔因希里省首府阿克茹特。2005年8月参