五次方程是一种最高次数为五次的多项式方程。本条目专指只含一个未知数的五次方程(一元五次方程),即方程形如
其中,、、、、和为复数域内的数,且不为零。例如:
寻找五次方程的解一直是个重要的数学问题。一次方程和二次方程很早就找到了公式解,经过数学家们的努力,后来三次方程及四次方程也有了解答,但是之后很长的一段时间里没有人知道五次方程是否存在公式解。相形之下,解五次方程显得格外的困难。
后来,保罗·鲁菲尼(英语:Paolo Ruffini)和尼尔斯·阿贝尔证明了一般的五次方程,不存在统一的根式解(即由方程的系数通过有限次的四则运算及根号组合而成的公式解)。认为一般的五次方程没有公式解存在的看法其实是不正确的。事实上,利用一些超越函数,如Θ函数或戴德金η函数即可构造出五次方程的公式解。另外,若只需求得数值解,可以利用数值方法(如牛顿法)得到相当理想的解答。
证明一般五次以上的方程无根式解的人是埃瓦里斯特·伽罗瓦,他巧妙地利用群论处理了上述的问题。
对于一般的五次方程
可以借由以下的转换
得到一个的五次多项式,上述的转换称为契尔恩豪森转换(英语:Tschirnhaus transformation)(Tschirnhaus transformation),借由特别选择的系数,可以使,, 的系数为,从而得到如下的方程:
以上的化简方法是由厄兰·塞缪尔·布灵(英语:Erland Samuel Bring)所发现,后来乔治·杰拉德(英语:George Jerrard)也独立发现了此法,因此上式称为布灵·杰拉德正规式(Bring-Jerrard normal form)。 其步骤如下: 首先令
可消去四次方项,得到
其中,
接下来,令, 得到
再令, 求得
第三步,利用契尔恩豪森想到的方法,令:
代入
得到
再令, 则得, 若令, 则,可由以下两个方程解得:
若以函数的观点来看,方程
的解有两个自变量 , 和 。
若再令
则方程可以进一步化简为如下形式:
它的解 是单一变量 的函数。
虽然一般的五次方程不存在根式解,但是对于某些特殊的五次方程,满足某些条件后还是有根式解的。
其中