Baum-Welch算法

✍ dations ◷ 2025-08-17 05:19:43 #估计理论,算法

在电气工程、计算机科学、统计计算和生物信息学中,Baum-Welch算法是用于寻找隐马尔可夫模型(HMM)未知参数的一种EM算法,它利用前向-后向算法来计算E-Step的统计信息。

Baum-Welch算法是以其发明者Leonard E. Baum和Lloyd R. Welch的名字命名的。Baum-Welch算法和隐马尔可夫模型在20世纪60年代末和70年代初由Baum和他的同事在国防分析研究所的一系列文章中首次描述。HMMs最初主要应用于语音处理领域。20世纪80年代,HMMs开始成为分析生物系统和信息,特别是遗传信息的有用工具。此后,它们成为基因组序列概率建模的重要工具。

隐马尔可夫模型描述了一组“隐含”变量和可观测到的离散随机变量的联合概率。它依赖于假设:第 i {\displaystyle i} 个隐藏变量只与第 i 1 {\displaystyle i-1} 个隐含变量相关,而与其他先前的隐藏变量无关,而当前观测到的状态仅依赖于当前的隐藏状态。

Baum-Welch算法利用EM算法,在给定一组观测特征向量的情况下,求出隐马尔可夫模型参数的最大似然估计。

记离散的隐含随机变量为 X t {\displaystyle X_{t}} ,它总共有 N {\textstyle N} 种状态( X t {\displaystyle X_{t}} N {\displaystyle N} 个不同的值)。设 P ( X t | X t 1 ) {\displaystyle P(X_{t}|X_{t-1})} 与时间无关,得到与时间无关的随机变量转移矩阵:

A = { a i j } = P ( X t = j | X t 1 = i ) {\displaystyle A=\{a_{ij}\}=P(X_{t}=j|X_{t-1}=i)}
初始的状态(即 t = 1 {\displaystyle t=1} )分布由下式给出:

π i = P ( X 1 = i ) {\displaystyle \pi _{i}=P(X_{1}=i)}

记观测到的变量为 Y t {\displaystyle Y_{t}} ,总共有 K {\displaystyle K} 种取值。同样假设由隐含变量得到的可观测变量与时间无关。在时间 t {\displaystyle t} ,由隐含变量 X t = j {\displaystyle X_{t}=j} 得到的可观察变量 Y t = y i {\displaystyle Y_{t}=y_{i}} 的概率是:

b j ( y i ) = P ( Y t = y i | X t = j ) {\displaystyle b_{j}(y_{i})=P(Y_{t}=y_{i}|X_{t}=j)}

由所有可能得 X t {\displaystyle X_{t}} Y t {\displaystyle Y_{t}} 的取值,我们可以得到 N × K {\displaystyle N\times K} 的矩阵 B = { b j ( y i ) } {\displaystyle B=\{b_{j}(y_{i})\}} ,其中 b j {\displaystyle b_{j}} 属于所有可能得隐含状态, y i {\displaystyle y_{i}} 属于所有的可观测状态。

给出可观测序列: Y = ( Y 1 = y 1 , Y 2 = y 2 , , Y T = y T ) {\displaystyle Y=(Y_{1}=y_{1},Y_{2}=y_{2},\cdots ,Y_{T}=y_{T})}

我们可以用 θ ( A , B , π ) {\textstyle \theta (A,B,\pi )} 描述隐马尔科夫链,Baum-Welch算法寻找 θ = arg m a x θ P ( Y | θ ) {\displaystyle \theta ^{*}=\arg {\underset {\theta }{max}}P(Y|\theta )} 的局部极大值,也就是能够使得观测到的序列出现的概率最大的HMM的参数 θ {\displaystyle \theta }

初始化参数 θ ( A , B , π ) {\displaystyle \theta (A,B,\pi )} ,可以随机初始化,或者根据先验知识初始化。

α i ( t ) = P ( Y 1 = y 1 , Y 2 = y 2 , , Y t = y t , X t = i | θ ) {\displaystyle \alpha _{i}(t)=P(Y_{1}=y_{1},Y_{2}=y_{2},\cdots ,Y_{t}=y_{t},X_{t}=i|\theta )} 是参数 θ {\displaystyle \theta } 的条件下,观测的序列是 y 1 , y 2 , , y t {\displaystyle y_{1},y_{2},\cdots ,y_{t}} ,时刻 t {\displaystyle t} 的状态是 i {\displaystyle i} 的概率。可以通过递归计算:

β i ( t ) = P ( Y t + 1 = y t + 1 , , Y T = y T | X t = i , θ ) {\displaystyle \beta _{i}(t)=P(Y_{t+1}=y_{t+1},\cdots ,Y_{T}=y_{T}|X_{t}=i,\theta )} 是参数是 θ {\displaystyle \theta } ,在时刻 t {\displaystyle t} 的状态是 i {\displaystyle i} 的条件下,余下部分的观测序列是 y t + 1 , , y T {\displaystyle y_{t+1},\cdots ,y_{T}} 的概率。

假设我们有一只会下蛋的鸡,每天中午我们都会去拾取鸡蛋。而鸡是否下蛋依赖于一些未知的隐含状态,这里我们简单的假设只有两种隐含状态会决定它是否下蛋。我们不知道这些隐含状态的初始值,不知道他们之间的转换概率,也不知道在每种状态下鸡会下蛋的概率。我们随机初始化他们来开始猜测。

假设我们得到的观测序列是(E=eggs, N=no eggs): N, N, N, N, N, E, E, N, N, N。

这样我们同时也得到了观测状态的转移:NN, NN, NN, NN, NE, EE, EN, NN, NN。

通过上面的信息来重新估计状态转移矩阵。

重新估计 S 1 {\displaystyle S_{1}} S 2 {\displaystyle S_{2}} 的转移概率为 0.22 2.4234 = 0.0908 {\displaystyle {\frac {0.22}{2.4234}}=0.0908} (下表中的"Pseudo probabilities"),重新计算所有的转移概率,得到下面的转移矩阵:

接下来重新估计Emission Matrix:

重新估计从隐含状态 S 1 {\displaystyle S_{1}} 得到观察结果E的概率是 0.2394 0.2730 = 0.8769 {\displaystyle {\frac {0.2394}{0.2730}}=0.8769} ,得到新的Emission Matrix

为了估计初始状态的概率,我们分别假设序列的开始状态是 S 1 {\displaystyle S_{1}} S 2 {\displaystyle S_{2}} ,然后求出最大的概率,再归一化之后更新初始状态的概率。

一直重复上面的步骤,直到收敛。

相关

  • 性别角色性别角色,相当于性别规范,是一种社会角色,包括人们基于一切生物性别与性别表达的感知或态度,而且被认为是适当、合宜或可接受的。性别角色通常集中在女性气质和男性气质的概念上
  • 别尔哥罗德州别尔哥罗德州(俄语:Белгородская область,罗马化:Belgorodskaya oblast)位于俄罗斯西南部顿河—第聂伯河中间的丘陵,南部、西部与乌克兰接壤。是俄罗斯联邦主
  • 世界第三以下列表为有关奥林匹克运动会奖牌统计。国际奥委会会为所有所属成员国编配的3个英文字母的国家或地区代码,每个编码只会代表一个国家或地区,由于历史和政治等原因,有部分国家
  • 圆周圆周是指圆或类似形状的周长。圆周和数学上重要的数学常数π有关。若定义圆周为 C {\displaystyle C} ,半径为
  • span class=nowrapAl(NOsub3/sub)sub3/sub/span硝酸铝(化学式:Al(NO3)3)是铝的硝酸盐,通常以水合结晶形式存在,最常见的水合结晶为九水合硝酸铝(Al(NO3)3·9H2O),分子量为375.13。硝酸铝很容易由氢氧化铝和硝酸反应制取:因为在金属
  • 氯化锶氯化锶(SrCl2)是锶和氯的盐。这是一种典型的盐,水溶液为中性。与其他锶化合物类似,氯化锶在火焰下呈红色,因此它被用于制造红色烟火。其化学性质介于氯化钡(毒性更强)和氯化钙间。
  • 阿诺·奥尔巴赫阿诺·雅各·奥尔巴赫(英语:Arnold Jacob "Red" Auerbach,1917年9月20日-2006年10月29日),美国传奇篮球教练,绰号“红头”奥尔巴赫。(Red Auerbach)。奥尔巴赫出生于纽约布鲁克林,早年
  • 成亮 (顺治进士)成亮,字寅天,号伾岚,直隶大名人。清初政治人物。成亮祖父成基命为明末大学士。父成克巩仕清,亦官至大学士。成亮于顺治六年(1649年)中式己丑科二甲进士,选庶吉士,散馆授编修,官至侍讲
  • 向近敏向近敏(1914年1月28日-2006年12月31日),中国医学病毒学家,医学教育学家,社会活动家。1913年生于湖北汉川。1978年至1986年任湖北医学院(今武汉大学医学部)教授、病毒研究所所长。200
  • 切丽·布思切丽·布莱尔,CBE,QC(英文:Cherie Booth Blair ,1954年9月23日-),生于英格兰大曼彻斯特郡,英国御用大律师,英国前首相布莱尔妻子,近年出版自传《Cherie Blair: Speaking for Myself》。