Baum-Welch算法

✍ dations ◷ 2025-10-23 04:07:20 #估计理论,算法

在电气工程、计算机科学、统计计算和生物信息学中,Baum-Welch算法是用于寻找隐马尔可夫模型(HMM)未知参数的一种EM算法,它利用前向-后向算法来计算E-Step的统计信息。

Baum-Welch算法是以其发明者Leonard E. Baum和Lloyd R. Welch的名字命名的。Baum-Welch算法和隐马尔可夫模型在20世纪60年代末和70年代初由Baum和他的同事在国防分析研究所的一系列文章中首次描述。HMMs最初主要应用于语音处理领域。20世纪80年代,HMMs开始成为分析生物系统和信息,特别是遗传信息的有用工具。此后,它们成为基因组序列概率建模的重要工具。

隐马尔可夫模型描述了一组“隐含”变量和可观测到的离散随机变量的联合概率。它依赖于假设:第 i {\displaystyle i} 个隐藏变量只与第 i 1 {\displaystyle i-1} 个隐含变量相关,而与其他先前的隐藏变量无关,而当前观测到的状态仅依赖于当前的隐藏状态。

Baum-Welch算法利用EM算法,在给定一组观测特征向量的情况下,求出隐马尔可夫模型参数的最大似然估计。

记离散的隐含随机变量为 X t {\displaystyle X_{t}} ,它总共有 N {\textstyle N} 种状态( X t {\displaystyle X_{t}} N {\displaystyle N} 个不同的值)。设 P ( X t | X t 1 ) {\displaystyle P(X_{t}|X_{t-1})} 与时间无关,得到与时间无关的随机变量转移矩阵:

A = { a i j } = P ( X t = j | X t 1 = i ) {\displaystyle A=\{a_{ij}\}=P(X_{t}=j|X_{t-1}=i)}
初始的状态(即 t = 1 {\displaystyle t=1} )分布由下式给出:

π i = P ( X 1 = i ) {\displaystyle \pi _{i}=P(X_{1}=i)}

记观测到的变量为 Y t {\displaystyle Y_{t}} ,总共有 K {\displaystyle K} 种取值。同样假设由隐含变量得到的可观测变量与时间无关。在时间 t {\displaystyle t} ,由隐含变量 X t = j {\displaystyle X_{t}=j} 得到的可观察变量 Y t = y i {\displaystyle Y_{t}=y_{i}} 的概率是:

b j ( y i ) = P ( Y t = y i | X t = j ) {\displaystyle b_{j}(y_{i})=P(Y_{t}=y_{i}|X_{t}=j)}

由所有可能得 X t {\displaystyle X_{t}} Y t {\displaystyle Y_{t}} 的取值,我们可以得到 N × K {\displaystyle N\times K} 的矩阵 B = { b j ( y i ) } {\displaystyle B=\{b_{j}(y_{i})\}} ,其中 b j {\displaystyle b_{j}} 属于所有可能得隐含状态, y i {\displaystyle y_{i}} 属于所有的可观测状态。

给出可观测序列: Y = ( Y 1 = y 1 , Y 2 = y 2 , , Y T = y T ) {\displaystyle Y=(Y_{1}=y_{1},Y_{2}=y_{2},\cdots ,Y_{T}=y_{T})}

我们可以用 θ ( A , B , π ) {\textstyle \theta (A,B,\pi )} 描述隐马尔科夫链,Baum-Welch算法寻找 θ = arg m a x θ P ( Y | θ ) {\displaystyle \theta ^{*}=\arg {\underset {\theta }{max}}P(Y|\theta )} 的局部极大值,也就是能够使得观测到的序列出现的概率最大的HMM的参数 θ {\displaystyle \theta }

初始化参数 θ ( A , B , π ) {\displaystyle \theta (A,B,\pi )} ,可以随机初始化,或者根据先验知识初始化。

α i ( t ) = P ( Y 1 = y 1 , Y 2 = y 2 , , Y t = y t , X t = i | θ ) {\displaystyle \alpha _{i}(t)=P(Y_{1}=y_{1},Y_{2}=y_{2},\cdots ,Y_{t}=y_{t},X_{t}=i|\theta )} 是参数 θ {\displaystyle \theta } 的条件下,观测的序列是 y 1 , y 2 , , y t {\displaystyle y_{1},y_{2},\cdots ,y_{t}} ,时刻 t {\displaystyle t} 的状态是 i {\displaystyle i} 的概率。可以通过递归计算:

β i ( t ) = P ( Y t + 1 = y t + 1 , , Y T = y T | X t = i , θ ) {\displaystyle \beta _{i}(t)=P(Y_{t+1}=y_{t+1},\cdots ,Y_{T}=y_{T}|X_{t}=i,\theta )} 是参数是 θ {\displaystyle \theta } ,在时刻 t {\displaystyle t} 的状态是 i {\displaystyle i} 的条件下,余下部分的观测序列是 y t + 1 , , y T {\displaystyle y_{t+1},\cdots ,y_{T}} 的概率。

假设我们有一只会下蛋的鸡,每天中午我们都会去拾取鸡蛋。而鸡是否下蛋依赖于一些未知的隐含状态,这里我们简单的假设只有两种隐含状态会决定它是否下蛋。我们不知道这些隐含状态的初始值,不知道他们之间的转换概率,也不知道在每种状态下鸡会下蛋的概率。我们随机初始化他们来开始猜测。

假设我们得到的观测序列是(E=eggs, N=no eggs): N, N, N, N, N, E, E, N, N, N。

这样我们同时也得到了观测状态的转移:NN, NN, NN, NN, NE, EE, EN, NN, NN。

通过上面的信息来重新估计状态转移矩阵。

重新估计 S 1 {\displaystyle S_{1}} S 2 {\displaystyle S_{2}} 的转移概率为 0.22 2.4234 = 0.0908 {\displaystyle {\frac {0.22}{2.4234}}=0.0908} (下表中的"Pseudo probabilities"),重新计算所有的转移概率,得到下面的转移矩阵:

接下来重新估计Emission Matrix:

重新估计从隐含状态 S 1 {\displaystyle S_{1}} 得到观察结果E的概率是 0.2394 0.2730 = 0.8769 {\displaystyle {\frac {0.2394}{0.2730}}=0.8769} ,得到新的Emission Matrix

为了估计初始状态的概率,我们分别假设序列的开始状态是 S 1 {\displaystyle S_{1}} S 2 {\displaystyle S_{2}} ,然后求出最大的概率,再归一化之后更新初始状态的概率。

一直重复上面的步骤,直到收敛。

相关

  • 罗吉尔·培根罗吉尔·培根(英语:Roger Bacon,1214年-1294年),英国方济各会修士、哲学家、炼金术士。他学识渊博,著作涉及当时所知的各门类知识,并对阿拉伯世界的科学进展十分熟悉。提倡经验主义,
  • BT分流布莱洛克-托马斯-陶西格分流术(英语:Blalock–Thomas–Taussig shunt),过去称布莱洛克-陶西格分流术(Blalock–Taussig shunt),简称布-陶分流或BT分流,是用来治疗青紫型先天性心脏病
  • 联邦储备委员会联邦储备委员会(英语:Federal Reserve Board of Governors,简称联储会)是美国联邦储备系统的主要管理机关。该会负责监管132个联邦储备银行,帮助推行货币政策。联储会理事由总统
  • 培根县培根县(Bacon County, Georgia)是美国乔治亚州东南部的一个县。面积741平方公里。,2000年共有人口10,103人,2005年增至10,379人。县治阿尔马。该县成立于1914年7月27日,县名为纪
  • 琥珀宫琥珀宫(俄语:Янтарная комната),又称琥珀屋、琥珀厅,是位于俄罗斯圣彼得堡附近凯瑟琳宫内的一座通体由琥珀和黄金装饰而成的,极端奢华的建筑。曾在18~20世纪间一度
  • 太守太守又称郡守,中国、朝鲜半岛与越南古代一种地方职官,一般是掌理地方郡一级的行政区之地方行政官。战国时就开始设置郡守。当时,列国在边境冲突地区设立郡的建制,作为综合行使军
  • 访问局部性访问局部性(英语:Locality of reference)指的是在计算机科学领域中应用程序在访问内存的时候,倾向于访问内存中较为靠近的值。访问局部性分为三种基本形式,一种是时间局部性,另一
  • 张宗禹张宗禹(?-1868年?),在《清史稿》被蔑称为张总愚,外号小阎王,安徽亳州雉河集(今涡阳)人,清末捻军首领。宗禹出身地主家庭;1855年跟随族叔张乐行参加雉河集会盟。后转战苏、豫、陕、鄂、皖
  • 日本小檗日本小檗(学名:),又名红叶小檗、紫叶小檗,为小檗科小檗属的植物。分布于日本以及中国大陆的大部分省区等地,目前广泛采用为园林植物。
  • 全日空25号班机空难历史上曾经发生过两次以全日空25号班机做代码的航空事故,共造成36人遇难,两架飞机编号分别为JA5045和JA5018。全日本航空公司25号班机是一架从从东京羽田机场飞往名古屋小牧机