在泛函分析中有多个有名的定理冠以里斯表示定理(英语:Riesz representation theorem),它们是为了纪念匈牙利数学家弗里杰什·里斯。
这个定理建立了希尔伯特空间与它的连续对偶空间的一个重要联系:如果底域是实数,两者是等距同构;如果域是复数,两者是等距反同构。如下所述,(反)同构是特别自然的。
设 ) = φ。
历史上,通常认为这个定理同时由里斯和弗雷歇在1907年发现(见参考文献)。格雷(Gray)在评论从他认为是原型的里斯(1909)一文到里斯表示定理的发展时说:“给定运算 ) 上的正线性泛函,紧支集连续复值函数空间。下面所说的波莱尔集表示由开集生成的 σ-代数。
局部紧豪斯多夫空间 上一个非负可数可加波莱尔测度 μ 是正规的当且仅当
成立只要 是开集和 是波莱尔集且 μ(E) < ∞。
定理:设 是一个局部紧豪斯多夫空间。对 Cc() 上任何正线性泛函 ψ,在 上存在惟一的波莱尔正则测度 μ 使得
对所有 ∈ Cc()。
进入测度论的一个途径是从拉东测度开始,定义为 C() 上一个正线性泛函。这种方式由布尔巴基采取;这里显然假设 首先是一个拓扑空间,而不仅是一个集合。对局部紧空间,重新得到了一个积分理论。
下面定理也称为里斯-马尔可夫定理,给出了 C0() 的对偶空间的一个具体实现, 上在无穷远趋于零的连续函数。定理陈述中的波莱尔集合同样指由开集生成的 σ-代数。结论与上一节类似,但不能包含在前一个结果之中。参见下面的技术性注释。
如果 μ 是一个复值可数可加波莱尔测度,μ 是正则的当且仅当非负可数可加测度 |μ| 正则(上一节所定义的)。
定理:设 是一个局部紧豪斯多夫空间。对 C0 上任何连续线性泛函 ψ,存在 上惟一正则可数可加波莱尔测度 μ 使得
对所有 ∈ C0()。ψ 的范数作为线性泛函是 μ 的全变差(英语:total variation),即
最后,ψ 是正的当且仅当测度 μ 是非负的。
注:Cc() 上任何有界线性泛函惟一延拓为 C0() 上有界线性泛函,因为后一个空间是前者的闭包。但是 Cc() 上一个无界正线性泛函不能延拓为 C0() 上一个有界线性泛函。因此前两个结论应用的情形稍微不同。