抛物线

✍ dations ◷ 2025-04-29 02:22:16 #抛物线
抛物线是一种圆锥曲线。在一个平面内,抛物线的每一点Pi,其与一个固定点F之间的距离等于其与一条不经过此点F的固定直线L之间的距离。这固定点F叫做抛物线的“焦点”,固定直线L叫做抛物线的“准线”。抛物线即把物体抛掷出去,落在远处地面,这物体在空中经过的曲线。在焦点上的点光源发出的光线,经抛物线反射后平行于抛物线的对称轴。典型应用如手电筒。抛物线的标准方程有四个:y 2 = 2 p x ( p > 0 ) {displaystyle y^{2}=2pxquad left(p>0right)} (开口向右); y 2 = − 2 p x ( p > 0 ) {displaystyle y^{2}=-2pxquad left(p>0right)} (开口向左); x 2 = 2 p y ( p > 0 ) {displaystyle x^{2}=2pyquad left(p>0right)} (开口向上); x 2 = − 2 p y ( p > 0 ) {displaystyle x^{2}=-2pyquad left(p>0right)} (开口向下); (p为准焦距)焦点在 x 轴正半轴的抛物线参数方程为:抛物线上任意一点P ( x , y ) {displaystyle (x,y)} 至准线 a x + b y + c = 0 {displaystyle ax+by+c=0} 之距离与P至焦点C ( C 1 , C 2 ) {displaystyle (C_{1},C_{2})} 的距离恒等 故得 ( x − C 1 ) 2 + ( y − C 2 ) 2 = | a x + b y + c | a 2 + b 2 {displaystyle {sqrt {(x-C_{1})^{2}+(y-C_{2})^{2}}}={frac {|ax+by+c|}{sqrt {a^{2}+b^{2}}}}}抛物线的准线方程:将抛物线的方程化为标准形式:抛物线的方程: y 2 = 2 p x {displaystyle y^{2}=2px} ,焦点在x轴上 它的准线为: x = − 1 2 p {displaystyle x=-{frac {1}{2}}p}抛物线的方程: x 2 = 2 p y {displaystyle x^{2}=2py} ,焦点在y轴上 它的准线为: y = − 1 2 p {displaystyle y=-{frac {1}{2}}p}若抛物线方程为: ( y − k ) 2 = 4 c ( x − h ) {displaystyle (y-k)^{2}=4c(x-h)} ,则过此抛物线上一点 ( x 0 , y 0 ) {displaystyle (x_{0},y_{0})} 之切线方程为 ( y 0 − k ) ( y − k ) = 4 c ( x 0 − h ) + ( x − h ) 2 {displaystyle (y_{0}-k)(y-k)=4c{frac {(x_{0}-h)+(x-h)}{2}}} 若抛物线方程为: ( x − h ) 2 = 4 c ( y − k ) {displaystyle (x-h)^{2}=4c(y-k)} ,则过此抛物线上一点 ( x 0 , y 0 ) {displaystyle (x_{0},y_{0})} 之切线方程为 ( x 0 − h ) ( x − h ) = 4 c ( y 0 − k ) + ( y − k ) 2 {displaystyle (x_{0}-h)(x-h)=4c{frac {(y_{0}-k)+(y-k)}{2}}} x {displaystyle x} 改成 x 0 + x 2 {displaystyle {frac {x_{0}+x}{2}}} ,y 2 {displaystyle y^{2}} 改成 y 0 ⋅ y {displaystyle y_{0}cdot y} , y {displaystyle y} 改成 y 0 + y 2 {displaystyle {frac {y_{0}+y}{2}}} ,

相关

  • 牛奶牛乳,俗称牛奶,是最古老的天然饮料之一。顾名思义,牛乳是牛的乳汁。在不同国家,牛乳也分有不同的等级,目前最普遍的是全脂、高钙低脂及脱脂牛乳。美国将牛乳按照脂肪含量分为五类
  • 子宫癌子宫癌(Uterine cancer)为发源自子宫的所有癌症之统称。最常见的为子宫颈癌,为第二常见的妇女癌症。次常见的为子宫内膜癌,同时也是发达国家中第四常见的妇女癌症。风险因子根据
  • 亚胺培南/西司他丁亚胺培南/西司他丁 (Imipenem/cilastatin),是一种用于治疗各类严重感染的复方抗生素制剂 。 它由亚胺培南和西司他丁的组合制成,通过静脉注射或肌肉注射给药 。 临床应用其钠盐
  • 喉痛咽喉痛(sore throat、throat pain,又称喉咙痛或喉痛),是指咽喉出现痛楚的症状,最主要的成因是咽喉炎(喉咙发炎),但可由其他原因引致,例如白喉和伤风感冒威胁。 服用非类固醇消炎止痛
  • 医用微生物及免疫学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学免疫学(英语:Immunology)是生物医学的一
  • 皮疹疹为皮肤感染疾病的病征之一,疹通常是皮肤上的红肿、痒或皮肤粗糙。疹并没有特定的病因,可以是任何疾病所引起的。通常的病因包括病毒、免疫系统过量、食物或环境过敏所引起的
  • 科林斯 (古希腊)科林斯,为古希腊城邦之一,地处今科林斯地峡地区。基督教中,科林斯因新约圣经中的《哥林多前书》和《哥林多后书》而得名(哥林多即为科林斯)。
  • 化学家化学家一般是指从事于近现代化学研究的科学家,有专职和兼职之分,在英国亦可指药剂师。化学家们会对化学元素、原子、分子及它们如何互相作用作出研究。化学家们研究并测试药物
  • 埃及第四王朝第八第十第四王朝是古埃及古王国时期第二个王朝,古代埃及文明在这一时代达到空前的高度,例如最大的金字塔胡夫金字塔就是这个时代的胡夫法老建造的。因此第四王朝被认为是古埃
  • 纵膈腔纵膈(mediastinum)是描述胸腔中心为疏松结缔组织所包围的构造,并无一个明显的界限。本区域包含许多解剖构造,包含心脏及其周围血管系统、食道、气管、膈神经(英语:phrenic nerve)、