首页 >
抛物线
✍ dations ◷ 2025-09-02 09:46:09 #抛物线
抛物线是一种圆锥曲线。在一个平面内,抛物线的每一点Pi,其与一个固定点F之间的距离等于其与一条不经过此点F的固定直线L之间的距离。这固定点F叫做抛物线的“焦点”,固定直线L叫做抛物线的“准线”。抛物线即把物体抛掷出去,落在远处地面,这物体在空中经过的曲线。在焦点上的点光源发出的光线,经抛物线反射后平行于抛物线的对称轴。典型应用如手电筒。抛物线的标准方程有四个:y
2
=
2
p
x
(
p
>
0
)
{displaystyle y^{2}=2pxquad left(p>0right)}
(开口向右);
y
2
=
−
2
p
x
(
p
>
0
)
{displaystyle y^{2}=-2pxquad left(p>0right)}
(开口向左);
x
2
=
2
p
y
(
p
>
0
)
{displaystyle x^{2}=2pyquad left(p>0right)}
(开口向上);
x
2
=
−
2
p
y
(
p
>
0
)
{displaystyle x^{2}=-2pyquad left(p>0right)}
(开口向下);
(p为准焦距)焦点在 x 轴正半轴的抛物线参数方程为:抛物线上任意一点P
(
x
,
y
)
{displaystyle (x,y)}
至准线
a
x
+
b
y
+
c
=
0
{displaystyle ax+by+c=0}
之距离与P至焦点C
(
C
1
,
C
2
)
{displaystyle (C_{1},C_{2})}
的距离恒等
故得
(
x
−
C
1
)
2
+
(
y
−
C
2
)
2
=
|
a
x
+
b
y
+
c
|
a
2
+
b
2
{displaystyle {sqrt {(x-C_{1})^{2}+(y-C_{2})^{2}}}={frac {|ax+by+c|}{sqrt {a^{2}+b^{2}}}}}抛物线的准线方程:将抛物线的方程化为标准形式:抛物线的方程:
y
2
=
2
p
x
{displaystyle y^{2}=2px}
,焦点在x轴上
它的准线为:
x
=
−
1
2
p
{displaystyle x=-{frac {1}{2}}p}抛物线的方程:
x
2
=
2
p
y
{displaystyle x^{2}=2py}
,焦点在y轴上
它的准线为:
y
=
−
1
2
p
{displaystyle y=-{frac {1}{2}}p}若抛物线方程为:
(
y
−
k
)
2
=
4
c
(
x
−
h
)
{displaystyle (y-k)^{2}=4c(x-h)}
,则过此抛物线上一点
(
x
0
,
y
0
)
{displaystyle (x_{0},y_{0})}
之切线方程为
(
y
0
−
k
)
(
y
−
k
)
=
4
c
(
x
0
−
h
)
+
(
x
−
h
)
2
{displaystyle (y_{0}-k)(y-k)=4c{frac {(x_{0}-h)+(x-h)}{2}}}
若抛物线方程为:
(
x
−
h
)
2
=
4
c
(
y
−
k
)
{displaystyle (x-h)^{2}=4c(y-k)}
,则过此抛物线上一点
(
x
0
,
y
0
)
{displaystyle (x_{0},y_{0})}
之切线方程为
(
x
0
−
h
)
(
x
−
h
)
=
4
c
(
y
0
−
k
)
+
(
y
−
k
)
2
{displaystyle (x_{0}-h)(x-h)=4c{frac {(y_{0}-k)+(y-k)}{2}}}
x
{displaystyle x}
改成
x
0
+
x
2
{displaystyle {frac {x_{0}+x}{2}}}
,y
2
{displaystyle y^{2}}
改成
y
0
⋅
y
{displaystyle y_{0}cdot y}
,
y
{displaystyle y}
改成
y
0
+
y
2
{displaystyle {frac {y_{0}+y}{2}}}
,
相关
- 醛固酮拮抗剂抗盐皮质激素(anti-mineralocorticoid、或称"醛固酮拮抗剂"(aldosterone antagonist)、醛固酮受体拮抗剂、醛甾酮拮抗剂)是指一种利尿剂能拮抗在盐皮质激素受体(Mineralocor
- 盲鳗见内文盲鳗亚纲(学名:Myxini)是一类海洋脊椎动物,在食物链上属于食腐动物。过去是无颌总纲之下的一目,现在则是无颌总纲下的圆口纲下的一亚纲。盲鳗广泛分布于全球三大洋的温带、
- KEGGKEGG(英语:Kyoto Encyclopedia of Genes and Genomes,京都基因与基因组百科全书,日语:京都遺伝子ゲノム百科事典)是一套日本于1995年制定的人类基因组计划,此为关于基因组、酶促途
- 长子县长子县(汉语拼音:Zhǎngzǐ Xiàn)是中国山西省长治市所辖的一个县。总面积为1029平方公里,2010年人口为35.3万人。长子县地域古老,早在5000多年前,中华始祖炎帝神农氏就在这里试
- 太平省太平省(越南语:Tỉnh Thái Bình/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H",
- 奥克兰奥克兰(英语:Auckland;毛利语:Tāmaki Makaurau 或 Ākarana),老华侨译作屋仑,是新西兰的一个都会区,位于南太平洋南纬37度,为新西兰人囗最多的城市,也是北岛最大的城市。人口约150万,
- 胆囊胆囊,是位于右方肋骨下肝脏后方的梨形囊袋构造,有浓缩和储存胆汁之用。胆囊是一个有弹性的梨形囊袋。胆囊内的单层柱状上皮细胞会分泌出粘液,构成粘膜。保护胆囊内壁免受胆汁腐
- 家畜胚胎学家畜胚胎学是胚胎学的一支,为研究家畜和家禽的胚胎的机理产生发展的学科。其研究范围包括家畜家禽是从受精到分娩或孵出之前,胚胎子宫或卵膜发育的过程。
- 干眼症干眼症(英语:Dry eye syndrome, DES),又名干性角结膜炎(keratoconjunctivitis sicca, KCS),是一种眼睛干涩的状态。其他的症状包括眼睛过敏、发红、多眼屎或是容易疲劳,也可能出现视
- 决策支持系统决策支持系统(Decision Support Systems,简称DSS),是协助进行商业级或组织级决策活动的信息系统。DSSs一般面向中高层面管理,服务于组织机构内部管理、操作和规划级的决策,帮助决