抛物线

✍ dations ◷ 2025-12-02 03:19:24 #抛物线
抛物线是一种圆锥曲线。在一个平面内,抛物线的每一点Pi,其与一个固定点F之间的距离等于其与一条不经过此点F的固定直线L之间的距离。这固定点F叫做抛物线的“焦点”,固定直线L叫做抛物线的“准线”。抛物线即把物体抛掷出去,落在远处地面,这物体在空中经过的曲线。在焦点上的点光源发出的光线,经抛物线反射后平行于抛物线的对称轴。典型应用如手电筒。抛物线的标准方程有四个:y 2 = 2 p x ( p > 0 ) {displaystyle y^{2}=2pxquad left(p>0right)} (开口向右); y 2 = − 2 p x ( p > 0 ) {displaystyle y^{2}=-2pxquad left(p>0right)} (开口向左); x 2 = 2 p y ( p > 0 ) {displaystyle x^{2}=2pyquad left(p>0right)} (开口向上); x 2 = − 2 p y ( p > 0 ) {displaystyle x^{2}=-2pyquad left(p>0right)} (开口向下); (p为准焦距)焦点在 x 轴正半轴的抛物线参数方程为:抛物线上任意一点P ( x , y ) {displaystyle (x,y)} 至准线 a x + b y + c = 0 {displaystyle ax+by+c=0} 之距离与P至焦点C ( C 1 , C 2 ) {displaystyle (C_{1},C_{2})} 的距离恒等 故得 ( x − C 1 ) 2 + ( y − C 2 ) 2 = | a x + b y + c | a 2 + b 2 {displaystyle {sqrt {(x-C_{1})^{2}+(y-C_{2})^{2}}}={frac {|ax+by+c|}{sqrt {a^{2}+b^{2}}}}}抛物线的准线方程:将抛物线的方程化为标准形式:抛物线的方程: y 2 = 2 p x {displaystyle y^{2}=2px} ,焦点在x轴上 它的准线为: x = − 1 2 p {displaystyle x=-{frac {1}{2}}p}抛物线的方程: x 2 = 2 p y {displaystyle x^{2}=2py} ,焦点在y轴上 它的准线为: y = − 1 2 p {displaystyle y=-{frac {1}{2}}p}若抛物线方程为: ( y − k ) 2 = 4 c ( x − h ) {displaystyle (y-k)^{2}=4c(x-h)} ,则过此抛物线上一点 ( x 0 , y 0 ) {displaystyle (x_{0},y_{0})} 之切线方程为 ( y 0 − k ) ( y − k ) = 4 c ( x 0 − h ) + ( x − h ) 2 {displaystyle (y_{0}-k)(y-k)=4c{frac {(x_{0}-h)+(x-h)}{2}}} 若抛物线方程为: ( x − h ) 2 = 4 c ( y − k ) {displaystyle (x-h)^{2}=4c(y-k)} ,则过此抛物线上一点 ( x 0 , y 0 ) {displaystyle (x_{0},y_{0})} 之切线方程为 ( x 0 − h ) ( x − h ) = 4 c ( y 0 − k ) + ( y − k ) 2 {displaystyle (x_{0}-h)(x-h)=4c{frac {(y_{0}-k)+(y-k)}{2}}} x {displaystyle x} 改成 x 0 + x 2 {displaystyle {frac {x_{0}+x}{2}}} ,y 2 {displaystyle y^{2}} 改成 y 0 ⋅ y {displaystyle y_{0}cdot y} , y {displaystyle y} 改成 y 0 + y 2 {displaystyle {frac {y_{0}+y}{2}}} ,

相关

  • 肺结核结核病(Tuberculosis,又称TB)为结核杆菌感染引起的疾病。结核通常造成肺部感染,也会感染身体的其他部分。大多数感染者没有症状,此型态感染称为潜伏结核感染(英语:Latent tuberculo
  • NTA荷兰皇家图书馆(荷兰文:Koninklijke Bibliotheek, KB)位于海牙,成立于1798年,是荷兰的国家图书馆。目前的馆名是1806年路易·波拿巴所命名。皇家图书馆在1993年成为独立机构,但其
  • 高碳酸血症高碳酸血症(英语:Hypercapnia)是血液中二氧化碳(CO2)水平异常升高的情况。二氧化碳是身体代谢的气态产物,通常通过肺排出体外。 高碳酸血症通常会引发增强呼吸和接触氧气反应,例
  • 内耳性眩晕病美尼尔氏综合症(Ménière's disease)是内耳的疾病,其症状是会突然眩晕、耳鸣、听力减损,而且耳朵有肿胀感。最典型的症状是一开始只有单侧耳朵有症状,不过后来可能双耳都受到影
  • 海岸警卫队HH / MH-60 J/T Jayhawk(英语:HH-60 Jayhawk)HC-130 H/J Hercules(英语:Lockheed HC-130)HU-25 A/C GuardianVC-37A Long Range VIP Aircraft美国海岸警卫队(英语:United States Coa
  • 国际刑事法院国际刑事法院(英语:International Criminal Court,常缩写作:ICC或ICCt;法语:Cour Pénale Internationale)成立于2002年,位于荷兰海牙,工作语言为英语和法语。其主要功能是对犯有灭绝
  • 纳瓦萨岛纳瓦萨岛(英语:Navassa Island、海地克里奥尔语:Lanavaz)是加勒比海无人居住的小岛,是美国的非建制领土,海地亦宣称所有。纳瓦萨岛面积大约5.2平方公里(2平方英里)。岛的经度和纬度
  • 义井镇义井镇可以指:
  • 延胡索酸延胡索酸(Fumaric Acid),又名富马酸、紫堇酸或地衣酸,即反丁烯二酸(IUPAC名为(E)-丁烯二酸),是一种无色、易燃的晶体,由丁烯衍生出的羧酸。它的化学式是C4H4O4。燃烧延胡索酸会释
  • 曲颈龟亚目 Cryptodira 侧颈龟亚目 Pleurodira龟鳖目(学名:Testudines)是脊索动物门爬行纲的一目,现存14科共341种各类龟、鳖,它们的肋骨进化成特殊的骨制和软骨护盾,称为龟甲。龟