纳维-斯托克斯方程

✍ dations ◷ 2024-12-23 01:31:41 #基本物理概念,连续介质力学,偏微分方程,空气动力学,流体力学中的方程,千禧年大奖难题

纳维尔-斯托克斯方程(Navier-Stokes equations),以克劳德-路易·纳维(Claude-Louis Navier)和乔治·斯托克斯命名,是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及重力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。

纳维尔-斯托克斯方程可用于描述大量在学术研究和经济生活中的重要现象之物理过程,因此有很重要的研究价值。它们可以用于模拟天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析,等等。

纳维-斯托克斯方程依赖微分方程来描述流体的运动。不同于代数方程,这些方程不寻求建立所研究的变量(譬如速度和压力)的关系,而寻求建立这些量的或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。其中,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明,加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。

这表示对于给定的物理问题,至少要用微积分才可以求得其纳维-斯托克斯方程的解。实用上,也只有最简单的情况才能用这种方法获得已知解。这些情况通常涉及稳定态(流场不随时间变化)的非紊流,其中流体的粘滞系数很大或者其速度很小(低雷诺数)。

对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机才能求得。这个科学领域称为计算流体力学。

虽然紊流是日常经验中就可以遇到的,但这类非线性问题极难求解。克雷数学学院于2000年5月21日设立了一个$1,000,000的大奖,奖励任何对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。

纳维-斯托克斯方程在大多数实际情况下是非线性的偏微分方程。在某些情况下,一维流和斯托克斯流(或蠕动流)方程可以简化为线性方程组。非线性使得很多的问题很难或者没法解决,但是它却是动荡方程组模型的重要影响因素。非线性是由于对流加速(与点速度变化相关联的加速度),因此,任何对流无论湍流与否都会涉及非线性。

湍流是时变的无序行为,这种行为常见于许多流体流动中。人们普遍认为,这是由于惯性流体被看作为一个整体而产生的:时间依赖性和对流加速度;因此惯性的影响很小的流体往往是层流(雷诺数量化了流所受惯性的大小)。虽然不完全确定,但一般相信纳维-斯托克斯方程能够合理地描述湍流。纳维-斯托克斯方程关于湍流的数值解是非常难得到的,而且由于湍流的显著不同的混合长度的尺度,需要精细分辨率的稳定解的计算时间变得不可行(见直接数值模拟)。尝试使用层流来解决湍流问题的方法通常会导致时间不稳定的解,它不能够适当收敛。为了解决这个问题,时间平均方程,如雷诺平均纳维-斯托克斯方程(RANS),再辅以湍流模型,被用作实际的计算流体动力学模拟湍流时(CFD)的应用程序。例如Spalart-Allmaras湍流,K-ω湍流,k-ε湍流和SST模型。另一种方法解决数值的纳维-斯托克斯方程是大涡模拟(LES)。这种方法在计算上是比RANS方法更昂贵(在时间和计算机存储器上),但因为较大的湍流尺度被明确地解决所以会产生更好的结果。

补充方程(例如,质量守恒定律)和良好的边界条件,使纳维-斯托克斯方程似乎可以进行流体运动的精确建模;甚至湍流(平均而言)也符合实际观察结果。纳维-斯托克斯方程假定所研究的流体是连续(它是无限可分的,而不是由粒子组成),并且是相对静止的。在非常小的尺度或极端条件下,由离散分子组成的真实流体将产生与由纳维-斯托克斯方程建模的连续流体不同的结果。根据Knudsen数的问题,统计力学甚至分子动力学可能是一个更合适的方法。另一个限制是方程的复杂性。对于普遍流体家族的公式是存在的,但纳维-斯托克斯方程对不常见流系的应用,往往会导致非常复杂的构成,而且该配方是目前研究的一个领域。出于这个原因,这些方程通常用于描述牛顿流体。研究这种液体是“简单”的,因为粘度模型最终被线性化;真正描述其他类型流体(如血液)的普遍的模型截至2012年还不存在。

在解释纳维-斯托克斯方程的细节之前,我们必须首先对流体的性质作几个假设。第一个假设是流体是连续的。这强调它不包含形成内部的空隙,例如,溶解的气体的气泡,而且它不包含雾状粒子的聚合。另一个必要的假设是所有涉及到的场,全部是可微的,例如压强,速度,密度,温度,等等。

该方程从质量,动量,和能量的守恒的基本原理导出。对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。该有限体积记为 Ω {\displaystyle \Omega } 或者。第二种情况称为或导数。

随质导数定义为算子(operator):

其中 v {\displaystyle \mathbf {v} } 的液体, P {\displaystyle \mathbb {P} }

其中

最后,我们得到:

其中 T {\displaystyle \mathbb {T} } 是一个未知数,我们需要另一个方程。

能量守恒:

其中:

假设一个理想气体:

上面是一共6个方程6个未知数的系统。(u,v,w,T,e以及  ρ {\displaystyle \rho } )。

在宾汉流体中,我们有稍微不同的假设:

那些流体在开始流动之前能够承受一定的剪切。牙膏是一个例子。

这是一种理想化的流体,其剪切应力, τ {\displaystyle \tau } ,由下式给出

该形式对于模拟各种一般流体有用。

其纳维-斯托克斯方程(Navier-Stoke equation)分为动量守恒公式

和质量守恒公式

其中,对不可压缩牛顿流体来说,只有对流项(convective terms)为非线性形式。对流加速度(convective acceleration)来自于流体流动随空间之变化所产生的速度改变,例如:当流体通过一个渐缩喷嘴(convergent nozzle)时,流体产生加速之情况。由于此项的存在,对于暂态运动中的流体来说,其流场速度变化不再单是时间的函数,亦与空间有关。

另外一个重要的观察重点,在于黏滞力(viscosity)在流场中的以流体速度作拉普拉斯运算来表现。这暗示了在牛顿流体中,黏滞力为动量扩散(diffusion of momentum),与热扩散方程式非常类似。

μ {\displaystyle \mu } 在整个流体上均匀,动量方程简化为

(若 μ = 0 {\displaystyle \mu =0} 这个方程称为欧拉方程;那里的重点是可压缩流和冲击波)。

如果现在再有 ρ {\displaystyle \rho } 为常数,我们得到如下系统:

连续性方程(假设不可压缩性):

注意纳维-斯托克斯方程仅可近似描述液体流,而且在非常小的尺度或极端条件下,由离散的分子和其他物质(例如悬浮粒子和溶解的气体)的混合体组成的真实流体,会产生和纳维-斯托克斯方程所描述的连续并且齐性的液体不同的结果。依赖于问题的纳森数,统计力学可能是一个更合适的方法。但是,纳维-斯托克斯方程对于很大范围的实际问题是有效的,只要记住他们的缺陷是天生的就可以了。

相关

  • 杰拉德·特·胡夫特杰拉德·特·胡夫特(荷兰语:Gerard 't Hooft ,1946年7月5日-),荷兰理论物理学家,乌得勒支大学教授,于1999年因为“阐明物理学中弱电相互作用的量子结构”与其指导教授马丁纽斯·韦尔
  • 二重证据法1925年,由王国维提倡,“吾辈生于今日,幸于纸上之材料外,更得地下之新材料。由此种材料,我辈固得据以补正纸上之材料,亦得证明古书之某部分全为实录,即百家不雅训之言亦不无表示一面
  • 1997年 茂朱-全州第十八届冬季世界大学生运动会于1997年1月24日至2月2日在韩国的全罗北道茂朱郡举行,这是韩国首次主办冬季世界大学生运动会,韩国也成为第二个主办冬季世界大学生运动会的亚洲
  • 校验码校验码通常是一组数字的最后一位,由前面的数字通过某种运算得出,用以检验该组数字的正确性。常见的校验码有中华人民共和国居民身份证的最后一位,ISBN号码的最后一位等。不同的
  • 国家卫生研究院 (台湾)国家卫生研究院,简称国卫院、国家卫生院,是中华民国在台湾医药与卫生研究机构,属于公设的财团法人。位在苗栗县竹南镇,属于新竹科学园区的一部分。最早的成立构想是在1988年,1996
  • 戈尔特斯戈尔特斯(Gore-Tex)是美国W.L. Gore & Associates公司的注册商标,为1976年由Wilbert L. Gore、Rowena Taylor与Robert W. Gore(Wilbert L. Gore之子)共同发明的防水透气性布料。
  • 广义相对论的实验验证1915年广义相对论最初被发表之时,并没有得到稳固的实验证据支持,已知道的是它正确地解释了水星近日点的反常进动,并且在哲学层面,它令人满意地结合了艾萨克·牛顿的万有引力定律
  • 夜行性动物夜行性(英语:nocturnality),是一种动物行为,形容这些生物会于日间休息,却在晚间活跃,正好与我们所熟悉的日行性行为相反。也有介乎两者之间,于黄昏时期出没的生活习性。昼伏夜出的习
  • 夏季奥林匹克运动会篮球比赛篮球自1936年以来一直是夏季奥运会比赛项目之一。美国包揽了1936年到1968年7届男子冠军。
  • 中国住房问题中国住房问题与中国的土地问题交织在一起,而自1980年代开始,中国大陆的城市化进程加速,大量人口由农村移居城市。至2010年代,六成人口居住于城市之中。在这一背景下,住房问题成为