纳维-斯托克斯方程

✍ dations ◷ 2025-04-04 11:26:21 #基本物理概念,连续介质力学,偏微分方程,空气动力学,流体力学中的方程,千禧年大奖难题

纳维尔-斯托克斯方程(Navier-Stokes equations),以克劳德-路易·纳维(Claude-Louis Navier)和乔治·斯托克斯命名,是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及重力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。

纳维尔-斯托克斯方程可用于描述大量在学术研究和经济生活中的重要现象之物理过程,因此有很重要的研究价值。它们可以用于模拟天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析,等等。

纳维-斯托克斯方程依赖微分方程来描述流体的运动。不同于代数方程,这些方程不寻求建立所研究的变量(譬如速度和压力)的关系,而寻求建立这些量的或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。其中,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明,加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。

这表示对于给定的物理问题,至少要用微积分才可以求得其纳维-斯托克斯方程的解。实用上,也只有最简单的情况才能用这种方法获得已知解。这些情况通常涉及稳定态(流场不随时间变化)的非紊流,其中流体的粘滞系数很大或者其速度很小(低雷诺数)。

对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机才能求得。这个科学领域称为计算流体力学。

虽然紊流是日常经验中就可以遇到的,但这类非线性问题极难求解。克雷数学学院于2000年5月21日设立了一个$1,000,000的大奖,奖励任何对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。

纳维-斯托克斯方程在大多数实际情况下是非线性的偏微分方程。在某些情况下,一维流和斯托克斯流(或蠕动流)方程可以简化为线性方程组。非线性使得很多的问题很难或者没法解决,但是它却是动荡方程组模型的重要影响因素。非线性是由于对流加速(与点速度变化相关联的加速度),因此,任何对流无论湍流与否都会涉及非线性。

湍流是时变的无序行为,这种行为常见于许多流体流动中。人们普遍认为,这是由于惯性流体被看作为一个整体而产生的:时间依赖性和对流加速度;因此惯性的影响很小的流体往往是层流(雷诺数量化了流所受惯性的大小)。虽然不完全确定,但一般相信纳维-斯托克斯方程能够合理地描述湍流。纳维-斯托克斯方程关于湍流的数值解是非常难得到的,而且由于湍流的显著不同的混合长度的尺度,需要精细分辨率的稳定解的计算时间变得不可行(见直接数值模拟)。尝试使用层流来解决湍流问题的方法通常会导致时间不稳定的解,它不能够适当收敛。为了解决这个问题,时间平均方程,如雷诺平均纳维-斯托克斯方程(RANS),再辅以湍流模型,被用作实际的计算流体动力学模拟湍流时(CFD)的应用程序。例如Spalart-Allmaras湍流,K-ω湍流,k-ε湍流和SST模型。另一种方法解决数值的纳维-斯托克斯方程是大涡模拟(LES)。这种方法在计算上是比RANS方法更昂贵(在时间和计算机存储器上),但因为较大的湍流尺度被明确地解决所以会产生更好的结果。

补充方程(例如,质量守恒定律)和良好的边界条件,使纳维-斯托克斯方程似乎可以进行流体运动的精确建模;甚至湍流(平均而言)也符合实际观察结果。纳维-斯托克斯方程假定所研究的流体是连续(它是无限可分的,而不是由粒子组成),并且是相对静止的。在非常小的尺度或极端条件下,由离散分子组成的真实流体将产生与由纳维-斯托克斯方程建模的连续流体不同的结果。根据Knudsen数的问题,统计力学甚至分子动力学可能是一个更合适的方法。另一个限制是方程的复杂性。对于普遍流体家族的公式是存在的,但纳维-斯托克斯方程对不常见流系的应用,往往会导致非常复杂的构成,而且该配方是目前研究的一个领域。出于这个原因,这些方程通常用于描述牛顿流体。研究这种液体是“简单”的,因为粘度模型最终被线性化;真正描述其他类型流体(如血液)的普遍的模型截至2012年还不存在。

在解释纳维-斯托克斯方程的细节之前,我们必须首先对流体的性质作几个假设。第一个假设是流体是连续的。这强调它不包含形成内部的空隙,例如,溶解的气体的气泡,而且它不包含雾状粒子的聚合。另一个必要的假设是所有涉及到的场,全部是可微的,例如压强,速度,密度,温度,等等。

该方程从质量,动量,和能量的守恒的基本原理导出。对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。该有限体积记为 Ω {\displaystyle \Omega } 或者。第二种情况称为或导数。

随质导数定义为算子(operator):

其中 v {\displaystyle \mathbf {v} } 的液体, P {\displaystyle \mathbb {P} }

其中

最后,我们得到:

其中 T {\displaystyle \mathbb {T} } 是一个未知数,我们需要另一个方程。

能量守恒:

其中:

假设一个理想气体:

上面是一共6个方程6个未知数的系统。(u,v,w,T,e以及  ρ {\displaystyle \rho } )。

在宾汉流体中,我们有稍微不同的假设:

那些流体在开始流动之前能够承受一定的剪切。牙膏是一个例子。

这是一种理想化的流体,其剪切应力, τ {\displaystyle \tau } ,由下式给出

该形式对于模拟各种一般流体有用。

其纳维-斯托克斯方程(Navier-Stoke equation)分为动量守恒公式

和质量守恒公式

其中,对不可压缩牛顿流体来说,只有对流项(convective terms)为非线性形式。对流加速度(convective acceleration)来自于流体流动随空间之变化所产生的速度改变,例如:当流体通过一个渐缩喷嘴(convergent nozzle)时,流体产生加速之情况。由于此项的存在,对于暂态运动中的流体来说,其流场速度变化不再单是时间的函数,亦与空间有关。

另外一个重要的观察重点,在于黏滞力(viscosity)在流场中的以流体速度作拉普拉斯运算来表现。这暗示了在牛顿流体中,黏滞力为动量扩散(diffusion of momentum),与热扩散方程式非常类似。

μ {\displaystyle \mu } 在整个流体上均匀,动量方程简化为

(若 μ = 0 {\displaystyle \mu =0} 这个方程称为欧拉方程;那里的重点是可压缩流和冲击波)。

如果现在再有 ρ {\displaystyle \rho } 为常数,我们得到如下系统:

连续性方程(假设不可压缩性):

注意纳维-斯托克斯方程仅可近似描述液体流,而且在非常小的尺度或极端条件下,由离散的分子和其他物质(例如悬浮粒子和溶解的气体)的混合体组成的真实流体,会产生和纳维-斯托克斯方程所描述的连续并且齐性的液体不同的结果。依赖于问题的纳森数,统计力学可能是一个更合适的方法。但是,纳维-斯托克斯方程对于很大范围的实际问题是有效的,只要记住他们的缺陷是天生的就可以了。

相关

  • 聚合酶链锁反应聚合酶链式反应(英文:Polymerase chain reaction,缩写:PCR,又称多聚酶链式反应),是一项利用DNA双链复制的原理,在生物体外复制特定DNA片段的核酸合成技术。通过这一技术,可在短时间内
  • 蒙医蒙古族传统医学,简称蒙医学,是流传在蒙古地方的一种传统医学,是蒙古民族医药学理论和治疗方法所形成的民族医学。真实的起源以不可考,但相信其针灸、草药、推拿等方式是汉朝以前
  • 百人队会议森都利亚大会或百人队会议 (拉丁语:comitia centuriata)为古代罗马共和国三大投票会议之一。相传为第六代国王塞尔维乌斯·图利乌斯创立,参加该大会不分是罗马人民还是平民,凡是
  • 斤部,为汉字索引中的部首之一,康熙字典214个部首中的第六十九个(四划的则为第九个)。就繁体和简体中文中,斤部归于四划部首。斤部通常是从下、右方均可为部字。且无其他部首可用
  • 罗克福奶酪罗克福干酪 (法语:le Roquefort),又译“洛克福奶酪”,是羊奶蓝霉干酪的一种,产于法国南部的塔恩河附近圣阿夫里克(Saint-Affrique)镇苏宗尔河畔的罗克福尔(Roquefort-sur-Soulzon)村。
  • 乳类本列表列出各国和地区年人均乳类消费量,数据年份为2007年:
  • 图片图像是人对视觉感知的物质再现。图像可以由光学设备获取,如照相机、镜子、望远镜及显微镜等;也可以人为创作,如手工绘画。图像可以记录、保存在纸质介质、胶片等等对光信号敏感
  • 美国麻醉药品和危险药物局麻醉药物和危险药物管理局( Bureau of Narcotics and Dangerous Drugs,简称BNDD)是美国缉毒局的前身。它建立于1968年,是美国司法部的下属机构,包括由原属于美国财政部的麻醉药物
  • 玛雅语系玛雅语系是一支使用于墨西哥东南一直到中美洲北部的语系,最远到达洪都拉斯,最早可追溯到五百年前前哥伦布时期的中部美洲(包括中美洲与墨西哥),虽然现今这些地区的官方语言为西班
  • 艾蒂安-朱尔·马雷艾蒂安-朱尔·马雷(Étienne-Jules Marey,1830年3月5日-1904年3月21日),法国科学家。他在心脏内科、医疗仪器、航空、连续摄影等方面的工作卓有成效。他被广泛认为是摄影先驱之一