亏格

✍ dations ◷ 2025-12-03 22:23:17 #几何拓扑学,曲面,代数拓扑,代数曲线,图论,拓扑图论,微分几何

数学上,亏格(genus)有几个不同但密切相关的意思:

连通,可定向曲面的亏格是一个整数,代表沿闭简单曲线切开但不切断曲面的最大曲线条数。这和柄的个数是相同的。

例如:

亏格0

亏格1

亏格2

亏格3

连通,不可定向闭曲面的(不可定向)亏格是一个正整数,代表附在球上的交叉帽的个数。

例如:

纽结的亏格定义为所有的Seifert曲面的最小亏格。

3维柄体的亏格是一个整数,代表沿嵌入的圆盘切开而不切断流形的最大切割数。这和柄的个数是一致的。

例如:

图的亏格是最小的整数使得图可以不用交叉就画在有个柄的球面上(也就是亏格为的可定向曲面)。这样,一个平面图亏格为0,因为可以画在球面上而没有自交。

图的不可定向亏格是最小的整数使得图可以不用交叉就画在有个交叉帽的球面上(也就是不可定向亏格为的不可定向曲面)。

在拓扑图论中,有几种对群的亏格的定义。Arthur T. White引入了如下概念。群 G {\displaystyle G} 的亏格的定义.当定义的域是复数,且无奇点时,该定义和作为黎曼曲面的的拓扑定义相同(其复数点组成的流形).代数几何中的椭圆曲线的定义为。

相关

  • 抗抑郁症药物抑郁症,亦称忧郁症,是一类以抑郁心境为主要特点的情感障碍。它主要包括:重度抑郁症、持续性抑郁症、季节性抑郁症。它们的共同表现为:长时间持续的抑郁情绪,并且这种情绪明显超过
  • 幻觉幻觉(英语:Hallucination)是指在没有客观刺激作用于相应感官的条件下,而感觉到的一种真实的、生动的知觉。相对的,错觉则是具有真正的外在刺激,但反应错误的认知。幻觉是知觉障碍
  • 世界无烟日世界无烟日(英语:World No Tobacco Day,或译世界无烟草日),是世界卫生组织在1987年创立的,现在每年的5月31日就是世界无烟日。第一个世界无烟日是1988年4月7日。世界无烟日的意义
  • 乙酸钴乙酸钴,化学式Co(CH3COO)2。由硝酸钴(或硫酸钴)溶液用乙酸酸化,再经蒸发、结晶、分离、干燥而得。四水合物为紫红色潮解结晶固体。溶于水、酸和乙醇。140°C失水。乙酸钴可以和
  • 喻三归匣喻三归匣为曾运乾所提出之音韵学概念。曾运乾在《喻母古读考》中提出:“喻于二母(近人分喻母三等为于母)本非影母浊声:于母古隶牙声匣母,喻母古隶舌声定母。”意思是上古没有喻三
  • 台湾国宝中华民国国宝,这是指由中华民国文化资产(古物类)中央主管机关即行政院文化部依据《文化资产保存法》,就国立古物保管机关(构)所列册或由直辖市、县(市)政府审查登录之私有及地方政府
  • 奚卜兰岛奚卜兰岛(海岸阿美语:Ci'poran,意为在河口),又称狮球屿,日治时代称作辨天岛,是位于台湾花莲县丰滨乡港口村秀姑峦溪入海口中央的一座岛屿,面积大约相当于半个足球场。奚卜兰岛虽然长
  • 猬虾猬虾(学名:),亦称姬虾、美人虾、樱花虾、拳师虾,是猬虾属的一种虾。猬虾分布于几乎整个泛热带地区, 在一些温带地区也有分布。主要生活在从加拿大到巴西的大西洋海域(包括墨西哥湾)
  • 爱德华·吕佩尔威廉·彼得·爱德华·西蒙·吕佩尔(德语:Wilhelm Peter Eduard Simon Rüppell,1794年11月20日-1884年12月10日)是德国博物学家和探险家。吕佩尔出生在美因河畔法兰克福,父亲是一
  • 潘哈拉潘哈拉(Panhala),是印度马哈拉施特拉邦Kolhapur县的一个城镇。总人口3450(2001年)。该地2001年总人口3450人,其中男性1975人,女性1475人;0—6岁人口360人,其中男194人,女166人;识字率82