L (复杂度)

✍ dations ◷ 2025-09-18 15:12:38 #数学中未解决的问题,复杂度类,概率复杂度类,闭包算子,计算机科学中未解决的问题

L也称为LSPACE或DLOGSPACE,是计算复杂度理论中能被确定型图灵机利用对数空间解决的判定问题集合。

对数空间是指与输入规模成对数大小关系的可写的储存空间,大多数对数空间(LOGSPACE)算法以这种方式储存。

重要的相关未解问题包括复杂度类L和P是否恒等(L = P)及复杂度类L和NL是否恒等(L = NL)。目前已知有以下重要性质:

和功能性问题相关的类别是FL,在计算复杂度理论,FL是一个复杂度类,是能被确定型图灵机在对数空间下解决的函数问题的集合。

依照同样的原理,可以定义相应的FP,FNP,TFNP。

FL常用来定义对数空间归约(Log-space reduction,Log-空间规约)。对数空间归约指仅使用对数空间的确定型图灵机进行的规约。区别于常见的多项式时间规约,对数空间规约只允许DTM使用若干个log n(n是输入长度)空间。对数空间规约在定义NL-完全(NLC,NL-complete)问题时候起作用。

L是NL的子集,NL是可以被非确定型图灵机利用对数空间解决的判定问题集合。利用萨维奇定理的建构式证明,可得证NL包含在复杂度P之内,也就是可以被确定型图灵机在多项式空间解决的判定问题集合中。

存在几个已知的NL-完全问题,如2SAT(英语:2-satisfiability)。

根据萨维奇定理,我们已知有以下重要性质:

在计算复杂度理论内,RL(Randomized Logarithmic-space,随机对数空间),或者说RLP(Randomized Logarithmic-space Polynomial-time,随机对数空间多项式时间),是一个复杂度类,包含能以概率图灵机,在对数空间与多项式时间之内,在仅有单向容错的状况内解决的问题。此命名法与RP,这个相近但是没有对数空间限制的复杂度类是雷同的。

在定义RL时的概率图灵机,不会在回答YES的时候犯错。但是允许在回答NO的时候有小于1/3的犯错机会;这种容纳错误的方式被称作(one-sided error)。这里的1/3不是一个绝对的数值;任何符合SC包含一般图灵机以多项式时间和多项式对数空间解决的问题;换句话说,给予一般机器多项式对数的空间,则可以模拟机率图灵机使用对数空间的能力。

一般相信RL = L,换句话说,概率图灵机不会在对数空间下比确定型图灵机更强,多项式时间对数空间的计算方式可以完全的去随机化。这猜想的一个主要证据由Reingold et al.在2005年提出。这问题的证明在无条件去随机化里面可以说是一个被追寻的圣杯。这问题其中一个重大迈进是Omer Reingold证明了SL = L。

在计算复杂度理论,SL(Symmetric Logspace,对称对数空间),是一个复杂度类,是能被对称图灵机(英语:Symmetric Turing machine)在对数空间下解决的判定问题的集合。其存在以下重要性质:

USTCON问题(undirected s-t connectivity,关于无向图两点之间是否存在一个路径的问题)作为一个SL完全(SLC,SL-complete)的SL下的重要特例,通常和SL本身被一起讨论。

2004年10月Omer Reingold成功证明USTCON问题属于L,因为USTCON问题属于SL完全,这便等于证明了SL = L。即,SL是L的一种变体。

相关

  • 体重下降体重下降(Weight loss)在医学、健康或是体适能领域中,是指人体体重的下降,可能是因为体液的减少、体脂肪或脂肪组织的减少,也有可能是净体重(lean mass,无脂肪体重,是指骨骼矿物质、
  • 墨西哥鼠尾草墨西哥鼠尾草(学名:Salvia divinorum),俗名预言者鼠尾草(Diviner's Sage)、先知鼠尾草(Seer's Sage)、Ska María Pastora,鼠尾草属植物,它能引发幻视以及其他幻觉,是一种精神药物。原
  • 芭黎丝·希尔顿帕丽斯·惠妮·希尔顿(英语:Paris Whitney Hilton,1981年2月17日-,又译派瑞丝·希尔顿)是美国名媛、电视名人、歌手、女演员和模特儿,也是著名希尔顿酒店集团继承人之一。2003年,帕
  • 高炉高炉是炼铁的一种设施,也是目前最具有规模经济的炼铁法。目前所知最古老高炉是中国西汉时代(纪元前1世纪)熔炉。在纪元前5世纪中国文物中就发现铸铁出土可见该时代熔炼已经实用
  • YandexYandex(俄语:Яндекс,中文:燕基科斯,NASDAQ:YNDX)是一家俄罗斯互联网企业,旗下的搜索引擎在俄国内拥有逾60%的市场占有率,同时也提供其他的一系列互联网产品和服务。数据显示,Yan
  • 实质在哲学中,本质是一种属性或一组属性,它们使一个实体或物质成为它的根本所在,并且它必然存在,如果没有它,它就失去了它的身份。本质与偶然性形成对比:偶然性即实体或物质偶然存在的
  • 乌泰科尔乌泰科尔(Utekhol),是印度马哈拉施特拉邦Raigarh县的一个城镇。总人口7286(2001年)。该地2001年总人口7286人,其中男性3733人,女性3553人;0—6岁人口987人,其中男534人,女453人;识字率7
  • 加哥米德韦 (佛罗里达州)加哥米德韦(英语:Midway),是美国佛罗里达州下属的一座城市。建立于1986年。面积约 为9.9平方公里(约合3.8平方英里)。根据2010年美国人口普查,该市有人口3,004人。论人口在本州排行
  • 爱德华·罗宾逊 (圣经学者)爱德华·罗宾逊(1794年4月10日-1863年1月27日)是一位美国圣经研究学者。他在美国和当时的世界圣经研究和圣经历史学术中心德国学习,翻译了古代文字和德文书籍。他的《古希腊文-
  • 翼身融合翼身融合(Blended Wing Body,缩写BWB,亦称翼身合一、翼胴融合、翼胴合一),是一种飞机设计概念。顾名思义,它将传统的机身与机翼结构融合,变成类似飞行翼的外型。这可使飞机的升力以