L (复杂度)

✍ dations ◷ 2025-05-20 12:16:11 #数学中未解决的问题,复杂度类,概率复杂度类,闭包算子,计算机科学中未解决的问题

L也称为LSPACE或DLOGSPACE,是计算复杂度理论中能被确定型图灵机利用对数空间解决的判定问题集合。

对数空间是指与输入规模成对数大小关系的可写的储存空间,大多数对数空间(LOGSPACE)算法以这种方式储存。

重要的相关未解问题包括复杂度类L和P是否恒等(L = P)及复杂度类L和NL是否恒等(L = NL)。目前已知有以下重要性质:

和功能性问题相关的类别是FL,在计算复杂度理论,FL是一个复杂度类,是能被确定型图灵机在对数空间下解决的函数问题的集合。

依照同样的原理,可以定义相应的FP,FNP,TFNP。

FL常用来定义对数空间归约(Log-space reduction,Log-空间规约)。对数空间归约指仅使用对数空间的确定型图灵机进行的规约。区别于常见的多项式时间规约,对数空间规约只允许DTM使用若干个log n(n是输入长度)空间。对数空间规约在定义NL-完全(NLC,NL-complete)问题时候起作用。

L是NL的子集,NL是可以被非确定型图灵机利用对数空间解决的判定问题集合。利用萨维奇定理的建构式证明,可得证NL包含在复杂度P之内,也就是可以被确定型图灵机在多项式空间解决的判定问题集合中。

存在几个已知的NL-完全问题,如2SAT(英语:2-satisfiability)。

根据萨维奇定理,我们已知有以下重要性质:

在计算复杂度理论内,RL(Randomized Logarithmic-space,随机对数空间),或者说RLP(Randomized Logarithmic-space Polynomial-time,随机对数空间多项式时间),是一个复杂度类,包含能以概率图灵机,在对数空间与多项式时间之内,在仅有单向容错的状况内解决的问题。此命名法与RP,这个相近但是没有对数空间限制的复杂度类是雷同的。

在定义RL时的概率图灵机,不会在回答YES的时候犯错。但是允许在回答NO的时候有小于1/3的犯错机会;这种容纳错误的方式被称作(one-sided error)。这里的1/3不是一个绝对的数值;任何符合SC包含一般图灵机以多项式时间和多项式对数空间解决的问题;换句话说,给予一般机器多项式对数的空间,则可以模拟机率图灵机使用对数空间的能力。

一般相信RL = L,换句话说,概率图灵机不会在对数空间下比确定型图灵机更强,多项式时间对数空间的计算方式可以完全的去随机化。这猜想的一个主要证据由Reingold et al.在2005年提出。这问题的证明在无条件去随机化里面可以说是一个被追寻的圣杯。这问题其中一个重大迈进是Omer Reingold证明了SL = L。

在计算复杂度理论,SL(Symmetric Logspace,对称对数空间),是一个复杂度类,是能被对称图灵机(英语:Symmetric Turing machine)在对数空间下解决的判定问题的集合。其存在以下重要性质:

USTCON问题(undirected s-t connectivity,关于无向图两点之间是否存在一个路径的问题)作为一个SL完全(SLC,SL-complete)的SL下的重要特例,通常和SL本身被一起讨论。

2004年10月Omer Reingold成功证明USTCON问题属于L,因为USTCON问题属于SL完全,这便等于证明了SL = L。即,SL是L的一种变体。

相关

  • 核蛋白核蛋白是指与核酸(脱氧核糖核酸,DNA或者核糖核酸,RNA)有关的任何蛋白质。譬如,组织蛋白类型的蛋白-染色质。端粒酶,核糖核蛋白和精蛋白都是核蛋白。典型的核蛋白包括核糖体,核小体和
  • 未来未来可以视为描述一个事件经过一段时间后所变化的结果,和过去相对。从时间是线性的角度来说,是时间线上将要发生的那部分,也就是说,在时空上表示尚未发生的事的那部分。未来一直
  • 白喉抗毒素白喉抗毒素(英语:Diphtheria Antitoxin,DAT),是一种由经胃酶消化后的马白喉免疫球蛋白所组成的抗体类药物。主要用于白喉杆菌感染的预防和治疗。1891年,德国医学家埃米尔·阿道夫
  • NMTN-甲基色胺(英语:N-Methyltryptamine,NMT)是一种色胺衍生物。它作为一种生物碱,很可能在机体内由L-色氨酸合成,常见于几种植物的树皮、嫩芽(英语:shoot)和叶,包括维罗拉(英语:Virola)、金
  • 独立精神奖独立精神奖(英语:Independent Spirit Awards),全称“电影独立精神奖”(Film Independent Spirit Awards),成立于1984年,其宗旨是表彰独立制作的优秀电影作品,于美国加利福尼亚州洛杉
  • 氯金酸氯金酸也称为四氯合金酸,是分子式为H的无机化合物。制备氯金酸时,可将金溶在王水中,再将溶液蒸发即可。加热时,氯金酸会分解为氯化氢及三氯化金,此反应是可逆反应,因此将三氯化金
  • 2009年几内亚比绍总统选举几内亚比绍政府与政治 系列条目 2009年几内亚比绍总统选举将于2009年6月28日举行,共有11名候选人参加竞选,取代2009年3月31日被暗杀的若昂·贝尔纳多·维埃拉总统。几内亚比绍
  • 广冈达朗广冈达朗(1932年2月9日-)为日本的棒球选手之一,曾经效力于日本职棒读卖巨人队,退休之后曾经担任过东京养乐多燕子、西武狮队总教练。50 汤浅祯夫 | 51 水原茂 | 52 水原茂 | 53
  • 噶尔玛索诺木噶尔玛索诺木(?-1663年?),博尔济吉特氏,阿霸垓部人,清朝初年蒙古将领。顺治四年(1647年)十二月,清太宗第十一女固伦端顺长公主嫁噶尔玛索诺木。固伦端顺长公主的母亲懿靖大贵妃也是阿
  • 荷马诗颂荷马诗颂(古希腊语: Ὁμηρικοὶ Ὕμνοι, )是一部由33篇佚名作者写的古希腊颂诗组成的作品集。每篇颂诗都歌颂一位古希腊神灵。颂诗是“荷马化”的,因为他们和荷马史