倒数

✍ dations ◷ 2025-09-07 08:10:21 #倒数
数学上,一个数 x {displaystyle x} 的倒数(reciprocal),或称乘法逆元(multiplicative inverse),是指一个与 x {displaystyle x} 相乘的积为1的数,记为 1 x {displaystyle {tfrac {1}{x}}} 或 x − 1 {displaystyle x^{-1}} 。在抽象代数中,倒数所对应的抽象化概念是乘法群的某个元素的“乘法逆”,也就是相对于群中“乘法”运算的逆元素。注意这个名词只当相应的群中的运算被称为“乘法”后才使用。如果群中的运算被称为“加法”,那么同样的概念称为“加法逆”。乘法逆的具体定义可以参见群的逆元素概念。汉语中,名词倒数一般用来表示数字的乘法逆,一般在各种数域如:有理数、实数、复数,以及模n的同余类所构成的乘法群中使用。在复数域(实数域)中,每个除了0以外的复数(实数)都存在倒数:只要用某个数自身除1(也就是说用1除以某个数),即可得到它的倒数。用数学记号表示的话:每个复数(实数)只有一个倒数。一般来说,并不是对所有的代数结构中的乘法运算,每个元素都存在其乘法逆,如对矩阵乘法来说,秩小于阶数的矩阵就没有乘法逆,或者在环 Z 39 {displaystyle Z_{39}} 中,元素3和18也没有乘法逆。一个环中的一个元素有乘法逆当且仅当它是可逆元,而它的乘法逆是唯一的当且仅当它不是一个零因子,或者说当它是一个正则元。每个非零元素都有乘法逆的环称为除环。每个非零元素都至多有一个乘法逆的环称为无零因子环。乘积为-1的两个实数互为负倒数,实数x的负倒数记为 − 1 x {displaystyle -{frac {1}{x}}} 或 − x − 1 {displaystyle -x^{-1}} 。一个实数的倒数和其负倒数是相反数,0没有倒数或负倒数。

相关

  • 发育生物学发育生物学(英语:Developmental biology)是对于生物体生长和发育过程的研究。发育生物学研究基因对细胞生长,分化和形态发生(Morphogenesis)的调控,这些过程使生物体形成组织和器官
  • 长寿命裂变产物长寿命裂变产物一般指由核裂变反应产生的、半衰期超过20万年的放射性物质。这并非精确的科学定义,比如有人把某些半衰期在20年至100年间的裂变产物也称作长寿命裂变产物。另
  • 乔治·爱德华·摩尔乔治·爱德华·摩尔,OM(George Edward Moore或G. E. Moore,1873年11月4日-1958年10月24日),英国哲学家,与伯特兰·罗素一同被认为是分析哲学的主要创始人,主要贡献为后设伦理学,其知
  • 中国总理中国总理,是指近代中国政府的政府首脑,现在多指中华人民共和国国务院总理,即中华人民共和国中央人民政府的最高领导人,位列最高级别的国家级正职。在中国历史上,总理一职作为政府
  • 九校联盟中国九校联盟/C9联盟(简称C9)是中国大陆首个大学联盟,于2009年10月启动,联盟成员包括清华大学、北京大学、复旦大学、上海交通大学、浙江大学、中国科学技术大学、南京大学、西
  • 东圣吉16号事件东圣吉16号事件是一起渔业纠纷事件,发生于2016年4月25日,屏东琉球籍渔船“东圣吉16号”在冲之鸟礁(日方称“冲之鸟岛”)东南东约150海里(280千米)国际水域作业时遭到日本公务船扣
  • d̠ɹ̠˔浊齿龈后无咝塞擦音是一个辅音,被用于一些口语中。国际音标写作或。此音通常作为同位异音使用。浊齿龈后无咝塞擦音的特征包括:当符号成对出现时,左边的是清音,右边的是浊音。阴
  • 卡尔·李特尔卡尔·李特尔(Carl Ritter,1779年8月7日-1859年9月28日),为德国地理学家,出生在奎德林堡,后世称之为人文地理学之父。1796年,他入读了哈雷大学,读自然科学和文史等课程。1819年,他担任
  • FreeRiceFreeRice.com是一个以英文猜字游戏来募款以帮助改善全球饥荒的慈善网站。网民每猜中一个生字的意思,该网站就会捐出10粒稻米给联合国的世界粮食计划署(World Food Programme)。
  • 氟硼酸盐四氟硼酸盐,又称氟硼酸盐,是具有阴离子BF4-的一类化合物。四氟硼酸盐可以由四氟硼酸和金属或其氧化物、氢氧化物、碳酸盐反应得到。一些四氟硼酸盐的性质见下表:BF4-作为非配位