向量 · 向量空间 · 行列式 · 矩阵
标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积
矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·
线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·
在线性代数里,向量空间的一组元素中,若没有向量可用有限个其他向量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R3的三个向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。
假设是在域上的向量空间。如果1, 2, ..., 是的向量,称它们为,如果从域K 中有非全零的元素1, 2, ..., ,使得
或更简略地表示成,
(注意右边的零是的零向量,不是的零元。)
如果中不存在这样的元素,那么1, 2, ..., 是。
对可以给出更直接的定义。向量1, 2, ..., ,当且仅当它们满足以下条件:如果1, 2, ..., 是的元素,适合:
那么对所有 = 1, 2, ..., 都有 = 0。
在中的一个无限集,如果它任何一个有限子集都是线性无关,那么原来的无限集也是线性无关。
线性相关性是线性代数的重要概念,因为线性无关的一组向量可以生成一个向量空间,而这组向量则是这向量空间的基。
设 = R,考虑内的以下元素:
则e1、e2、……、en是线性无关的。
假设1、2、……、是R中的元素,使得:
由于
因此对于{1, ..., }内的所有,都有 = 0。
设是实变量的所有函数的向量空间。则内的函数和2是线性无关的。
假设和是两个实数,使得对于所有的,都有:
我们需要证明 = 0且 = 0。我们把等式两边除以(它不能是零),得:
也就是说,函数与一定是独立的,这只能在 = 0时出现。可推出也一定是零。
R4内的以下向量是线性相关的。
我们需要求出标量、和,使得:
可以形成以下的方程组:
解这个方程组(例如使用高斯消元法),可得:
由于它们都是非平凡解,因此这些向量是线性相关的。