线性无关

✍ dations ◷ 2025-06-29 07:59:07 #线性代数

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

在线性代数里,向量空间的一组元素中,若没有向量可用有限个其他向量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R3的三个向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。

假设是在域上的向量空间。如果1, 2, ..., 是的向量,称它们为,如果从域K 中有非全零的元素1, 2, ..., ,使得

或更简略地表示成,

(注意右边的零是的零向量,不是的零元。)

如果中不存在这样的元素,那么1, 2, ..., 是。

对可以给出更直接的定义。向量1, 2, ..., ,当且仅当它们满足以下条件:如果1, 2, ..., 是的元素,适合:

那么对所有 = 1, 2, ..., 都有 = 0。

在中的一个无限集,如果它任何一个有限子集都是线性无关,那么原来的无限集也是线性无关。

线性相关性是线性代数的重要概念,因为线性无关的一组向量可以生成一个向量空间,而这组向量则是这向量空间的基。

设 = R,考虑内的以下元素:

则e1、e2、……、en是线性无关的。

假设12、……、是R中的元素,使得:

由于

因此对于{1, ..., }内的所有,都有 = 0。

设是实变量的所有函数的向量空间。则内的函数和2是线性无关的。

假设和是两个实数,使得对于所有的,都有:

我们需要证明 = 0且 = 0。我们把等式两边除以(它不能是零),得:

也就是说,函数与一定是独立的,这只能在 = 0时出现。可推出也一定是零。

R4内的以下向量是线性相关的。

我们需要求出标量 λ 1 {\displaystyle \lambda _{1}} λ 2 {\displaystyle \lambda _{2}} λ 3 {\displaystyle \lambda _{3}} ,使得:

可以形成以下的方程组:

解这个方程组(例如使用高斯消元法),可得:

由于它们都是非平凡解,因此这些向量是线性相关的。

相关

  • 傈僳竹书陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 公共卫生期刊公共卫生期刊(英语:public health journal)指的是一份致力于在公共卫生领域,包括:流行病学、生物统计学和医疗保健(含医学、护理学等相关领域)等相关专业内容的科学期刊。与大多数
  • μ微 (micro-) 是国际单位制词头,指10-6,一百万分之一。它的语源是希腊语 μικρός (mikrós),代表符号是希腊字母 µ (mu)但(mu)通常只用在数学上且并非10-6,例如 µg micogr
  • 陆地卫星1号陆地卫星1号(Landsat 1)是美国国家航空航天局(NASA)于1972年7月23日发射的一颗遥感卫星。它是NASA的一项长期遥感卫星计划——陆地卫星计划的第一个成员。该人造卫星属于最早的
  • iFokIFokI是一种存在于细菌Flavobacterium okeanokoites的type IIS限制酶,含有位于N端的DNA结合区块(N-terminal DNA-binding domain),以及一个位于C端的非专一性DNA切割区块。当此酵
  • 脂解酶脂酶,是一种催化脂类的酯键水解反应的水溶性酶。因此,脂酶是酯酶下的一个亚类。脂酶存在于基本上所有的生物体中,它在对脂类(如甘油三酸酯、脂肪、油等)的消化、运输和剪切中发挥
  • 数字物理学数字物理学(Digital physics)、或计算宇宙学(Computational universe),是一个理论,指宇宙可以用信息来代表,亦可以被计算。宇宙可能只是是疑似的电脑程序,或数字模拟物。数字物理学
  • 十五烷在化学中,十五烷是一种有机化合物,由十五个碳构成的饱和碳链,由于其只由碳和氢组成,因此也是烷烃的一种,其化学式为C15H32。它有4,347个同分异构体。
  • 马志明 (数学家)马志明(1948年1月25日-),生于四川成都,籍贯山西交城,中国数学家。1978年毕业于重庆师范学院数学系。1981年获中国科学院研究生院数学硕士学位。1984年获中国科学院应用数学研究所
  • 旺加里·马塔伊万加瑞·马塔伊(斯瓦希里语:Wangari Muta Maathai,1940年4月1日-2011年9月25日),肯尼亚的社会活动家,2004年诺贝尔和平奖得主,美国匹兹堡大学生物科学硕士。她是绿带运动和非洲减债