拉萨尔不变集原理

✍ dations ◷ 2025-10-26 17:33:17 #稳定性理论,动力系统,原则

拉萨尔不变集原理(LaSalle's invariance principle)也称为不变集原理(invariance principle)、Barbashin-克拉索夫斯基-拉萨尔原理(Barbashin-Krasovskii-LaSalle principle)或克拉索夫斯基-拉萨尔原理(Krasovskii-LaSalle principle),是自治动力系统(可能是非线性系统)李雅普诺夫稳定性的判断准则。

考虑以下方程式的系统

其中 x {\displaystyle \mathbf {x} } 为符合以下条件的变数向量

若可以找到 C 1 {\displaystyle C^{1}} 函数 V ( x ) {\displaystyle V(\mathbf {x} )} ,使下式成立

则任何轨迹中聚点(accumulation point)的集合都在 I {\displaystyle {\mathcal {I}}} 内, I {\displaystyle {\mathcal {I}}} 是其完整轨迹完全在 { x : V ˙ ( x ) = 0 } {\displaystyle \{\mathbf {x} :{\dot {V}}(\mathbf {x} )=0\}} 集合的联集。

V {\displaystyle V} 函数又有正定的性质,即

而且 I {\displaystyle {\mathcal {I}}} 除了 x ( t ) = 0 {\displaystyle \mathbf {x} (t)=\mathbf {0} } for t 0 {\displaystyle t\geq 0} 的平凡轨迹外,未包括其他轨迹,则原点为李雅普诺夫稳定性。

再者,若 V {\displaystyle V} 是径向无界(radially unbounded)

原点为全域渐近稳定。

x {\displaystyle \mathbf {x} } 在原点的邻域 D {\displaystyle D} 内才成立,且集合

除了 x ( t ) = 0 , t 0 {\displaystyle \mathbf {x} (t)=\mathbf {0} ,t\geq 0} 的轨迹外,不包括其他系统的轨迹,则依照拉萨尔不变集原理的局部稳定版本,原点有局部的渐近稳定性。

If V ˙ ( x ) {\displaystyle {\dot {V}}(\mathbf {x} )} 为负定,则原点的全域渐进稳定是李雅普诺夫第二定理的结果。若 V ˙ ( x ) {\displaystyle {\dot {V}}(\mathbf {x} )} 只是半负定,不变集原理也是判断渐近稳定性的准则。

此段落会用不变集原理来确立简单系统的区部渐近稳定性。此系统的微分方程如下:

其中 θ {\displaystyle \theta } 是单摆的角度,以垂直往下的角度为0度, m {\displaystyle m} 是单摆的质量, k {\displaystyle k} 是摩擦系数,g是因重力产生的加速度。

因此可以将系统方程式表示如下

利用不变集原理,可以证明一定大小的球体,若初始位置在原点附近 x 1 = x 2 = 0 {\displaystyle x_{1}=x_{2}=0} ,可以证明其所有的轨迹都会渐近收敛到原点。定义 V ( x 1 , x 2 ) {\displaystyle V(x_{1},x_{2})}

V ( x 1 , x 2 ) {\displaystyle V(x_{1},x_{2})} 即为系统的能量。 V ( x 1 , x 2 ) {\displaystyle V(x_{1},x_{2})} 在原点附近,半径 π {\displaystyle \pi } 的开球体内为正定。计算其导数

可观察到 V ( 0 ) = V ˙ ( 0 ) = 0 {\displaystyle V(0)={\dot {V}}(0)=0} 。若 V ˙ < 0 {\displaystyle {\dot {V}}<0} 成立,可以依李雅普诺夫第二定理得到所有轨迹都会到达原点的结论。不过很可惜, V ˙ 0 {\displaystyle {\dot {V}}\leq 0} V ˙ {\displaystyle {\dot {V}}} 只是半负定。不过,以下集合

也就是

除了平凡轨迹x = 0外,不包括系统内的任何轨迹。若在特定时间 t {\displaystyle t} , x 2 ( t ) = 0 {\displaystyle x_{2}(t)=0} ,则因为 x 1 {\displaystyle x_{1}} 必需小于 π {\displaystyle \pi } ,则 sin x 1 0 {\displaystyle \sin x_{1}\neq 0} x ˙ 2 ( t ) 0 {\displaystyle {\dot {x}}_{2}(t)\neq 0} 。因此,轨迹不会停留在集合 S {\displaystyle S} 内。

不变集原理的所有条件都满足,也可以下结论说:所有在原点附近的轨距,当 t {\displaystyle t\rightarrow \infty } 时,最后都会收敛到原点。

此结果是由约瑟夫·皮尔·拉萨尔(英语:J.P. LaSalle)(在RIAS(英语:Research Institute for Advanced Studies))及尼古拉·尼古拉耶维奇·克拉索夫斯基(英语:Nikolai Nikolaevich Krasovsky)两人独立发现,两人分别在1960年及1969年发表。约瑟夫·皮尔·拉萨尔在1960年发表此论文,是西方第一位发表此定理的人,而1952年由Barbashin及尼古拉·尼古拉耶维奇·克拉索夫斯基曾提到此定理中的特例,而1959年时由克拉索夫斯基发表了一般性的定理。

相关

  • 主持主持人是负责场所或节目、仪式等各式项目的主持者,为掌控事项进度及气氛的幕前负责人。
  • 宪政法令丹麦王国宪法 (丹麦语:Danmarks Riges Grundlov)是丹麦王国的宪法,适用于丹麦、格陵兰岛和法罗群岛。丹麦第一部宪法是1849年通过的并几经修改,目前的宪法是1953年修订的,丹麦王国
  • 美国海关总署美国海关总署(英语:United States Customs Service)是美国联邦政府已废止的海关和执法机构,负责收取进口关税和其他特定的边境保安勤务。2003年3月后,美国海关总署大部分机构为了
  • 罐装咖啡罐装咖啡是指灌装进入易拉罐,易于随时随地饮用的一种咖啡饮料,主要在自动售货机和便利店销售。罐装咖啡最早出现在1965年的日本。现在罐装咖啡在日本的饮料市场占有重要的地位
  • 钇铝石榴石钇铝石榴石(英语:yttrium aluminium garnet),简称YAG,分子式Y3Al5O12,为人工合成的透明石榴石。是钇铝复合材料的三相之一(其他两相为钇铝单斜晶体(YAM,Y4Al2O9)和钇铝钙钛矿(YAP,YAlO3))
  • 杰弗里·阿彻杰弗里·霍华德·阿彻(英语:Jeffrey Howard Archer,1940年4月15日-),滨海韦斯顿男爵,英国政治家、作家。杰弗里·阿彻出生于伦敦,曾在牛津大学就读,并代表牛津大学出战1962年的牛津剑
  • 李白滨李白滨(1908年1月8日-1978年6月)。台湾籍苗栗县人。京都大学哲学系毕业,著名教育家。父亲李祥甫,清朝秀才。父亲李祥甫于日治时期因为不愿入日本国籍,以致资产遭政府没收。李白滨
  • 德扬·亚科维奇德扬·亚科维奇(塞尔维亚语:Dejan Jaković;1985年7月16日-)是加拿大的一位职业足球运动员,在场上的位置是后卫。他现在效力于美职联球队洛杉矶FC。除了俱乐部的赛事之外,他也代表
  • 武田信绳武田信绳(1471年-1507年3月27日)是日本战国时代武将。甲斐守护大名。武田信虎之父、武田信玄之祖父、武田胜赖的曾祖父。甲斐源氏宗家武田氏第17代当主。武田信绳是第16代当主
  • 川上纱惠奈川上纱惠奈(日语:川上 紗恵奈/かわかみ さえな ,1997年12月5日-),日本女子羽毛球运动员,亦为现役日本国家羽毛球队(B队)成员。岛根县出生,毕业于松任初中及福岛县立富冈高等学校,现隶属