微分流形

✍ dations ◷ 2025-04-08 10:31:04 #微分几何,微分拓扑学,流形

光滑流形(英语:),或称 C∞-微分流形(differential manifold)、C∞-可微流形(differentiable manifold),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是 C∞ 类的微分流形。可微流形在物理学中非常重要。特殊种类的可微流形构成了经典力学、广义相对论和杨-米尔斯理论等物理理论的基础。可以为可微流形开发微积分。可微流形上的微积分研究被称为微分几何。

微分几何(differential geometry)作为一个独特的学科的出现一般归功于高斯(Carl Friedrich Gauss)和黎曼( Bernhard Riemann)。黎曼在哥廷根的著名的康复讲座中描述了多个面向。他通过在一个新的方向上改变给定对象的直观过程激发了多方面的想法,并且预先描述了协调系统和图表在随后形式发展中的作用:

物理学家马克士威(James Clerk Maxwell)和数学家库尔巴斯托罗(Gregorio Ricci-Curbastro)和齐维塔(Tullio Levi-Civita)的成果导入了张量分析和广义协变性的概念,它将内在几何属性识别为关于协调变换的不变量。这些想法在1912年爱因斯坦发展广义相对论理论时取得关键性的应用。外尔(Hermann Weyl)于1912年给出了微分流形的一个内在的定义。1930年代,该课题基础性方面的工作被哈斯勒·惠特尼(Hassler Whitney)等人厘清,使得从19世纪下半叶起开始发展起来的相关的直觉知识变得更精确,并通过微分几何和李群使微分流形的理论得到进一步的发展。

r {\displaystyle r} , )}的集合,其中α是覆盖 X的开放集合,并且对于每个索引α

α在n维真实空间的开放子集上的同胚。图册的转移映射(transition map)功能是

以图册来定义流形的概念是由夏尔·埃雷斯曼于1943年所提出。每个拓扑流形都有一个图册。-atlas是一个图册,其转换图是。拓扑流形具有0-atlas,并且通常-流形具有-atlas。连续图册(continuous atlas)是0图册,平滑图册是∞图册,分析图册(analytic atlas)是ω图册。

伪群(Pseudogroups)的概念提供了弹性的图册泛化(generalization of atlases),允许以统一的方式在流形上定义成各种不同的结构。伪群由拓扑空间S和由S的开放子集到S的其他开放子集的同态组成的集合Γ组成,使得

最后三个条件类似于一个群(group)的定义。注意,Γ不必是群,因为这些函数在S上不是全域定义的。

有时使用替代方法来赋予具有结构的流形是有用的。这里 = 1, 2, ..., ∞, 或ω为实分析流形(real analytic manifolds)。不考虑坐标图,可以从流形本身定义的功能开始。 的结构层(structure sheaf),表示为C,是一种函数 ,它为每个开放集 ⊂ 定义连续函数 → R的代数C()。

在n维可微分流形 上的实值函数f在点 ∈ 处被称为可微分 ,如果它在周围定义的任何坐标图中是可微分的。更准确地说,如果(, )是卡(chart),其中包含,是 的开放集合,而且 : → R是定义卡(chart)的映射,则f是可微分的,如果且仅当

在()处是可微分的。一般会有很多可用的卡(chart);然而,可微分的定义不取决于的卡(chart)的选择。从链式法则(chain rule)应用到一个卡(chart)和另一个图之间的转换函数,如果在的任何特定卡(chart)中都是可微分的,那么在的所有卡(chart)中都是可微分的。类似的情况适用于定义函数,平滑函数和分析函数。

点的切空间由该点处的可能的方向导数构成,并且具有与流形相同的维数n。对于一组(非奇异)坐标在本地点,坐标导数(coordinate derivatives) k = x k {\displaystyle \partial _{k}={\frac {\partial }{\partial x_{k}}}} 确定切线空间的完整基础。

向量空间的对偶空间(dual space)是矢量空间上的实值线性函数集合。余切空间处的一点是该点的切线空间的对偶位置,而余切丛(cotangent bundle)是所有余切空间的集合。

黎曼流形是一个可微分的流形,切空间以微分的方式产生内积。内积结构可以称为黎曼度量(metric)。该度量可以用于互变向量和辅助向量,并定义rank 4黎曼曲率张量。黎曼流形有长度、体积和角度的概念。任何可微流形都可以被称为黎曼结构。

一个共同的流形是具有封闭性的,非退化的symmetric 2-tensor形式的流形。这种情况迫使相似的流形是均匀的。在汉密尔顿力学中作为相位空间出现的反切丛(Cotangent bundles)是激励的例子,但是许多紧凑型流形也具有扭对称(symplectic)结构。

相关

  • 纵隔纵膈(mediastinum)是描述胸腔中心为疏松结缔组织所包围的构造,并无一个明显的界限。本区域包含许多解剖构造,包含心脏及其周围血管系统、食道、气管、膈神经(英语:phrenic nerve)、
  • SClsub4/sub四氯化硫是一种浅黄色的晶体,化学式为SCl4。它是一种不稳定的化合物,超过242K就会分解成二氯化硫和氯气。在193K下用氯处理其他硫的氯化物可得四氯化硫:它的结构可能是离子晶体
  • 法兰索瓦·杜鲁福弗朗索瓦·罗兰·特吕弗(François Roland Truffaut,1932年2月6日-1984年10月21日),法国著名导演,法国新浪潮(电影创作流派)的代表之一,“作者电影”的提倡者和佼佼者,与法国另一名导
  • 前1世纪公元前100年1月1日至前1年12月31日的这一段期间被称为前1世纪。
  • 冈田启介冈田启介(1868年2月13日-1952年10月17日)是一名日本海军军人及政治家。冈田于1889年自日本海军兵校毕业,是第15届毕业生。曾参与中日甲午战争(丰岛海战、黄海海战)、日俄战争(日本
  • 乘积法则乘积法则,也称积定则、莱布尼兹法则,是数学中关于两个函数的积的导数的一个计算法则。若已知两个可导函数 f , g {\displayst
  • 列·毕顿列·毕顿(英语:Red Buttons,1919年2月5日-2006年7月13日)是一名美国电影演员及喜剧演员。曾凭《樱花恋》()中的演出赢得第30届奥斯卡金像奖最佳男配角奖。原名Aaron Chwatt,在纽约市
  • 巴黎-里斯本电台巴黎-里斯本电台(Paris Lisbonne),是法国国际广播集团旗下的一所调频电台,电台坐落于葡萄牙首都里斯本,使用FM90.4MHz对里斯本播出节目。2006年该台改为欧洲里斯本电台(Rádio Euro
  • 超高清蓝光光盘超高清蓝光光盘(英语:Ultra HD Blu-ray)是改良型蓝光光盘的数字光盘数据存储格式。超高清蓝光光盘的碟片尺寸规格虽与传统的CD、DVD及现有的蓝光光盘相同,并且采用和传统蓝光盘
  • 分子植物《分子植物》(ISSN 1674-2052,在线ISSN 1752-9867,)是由中科院上海生科院植物生理生态研究所和中国植物生理学会共同主办的一份分子植物学方面的学术期刊,2008年创刊。由《植物