微分流形

✍ dations ◷ 2025-11-19 18:01:44 #微分几何,微分拓扑学,流形

光滑流形(英语:),或称 C∞-微分流形(differential manifold)、C∞-可微流形(differentiable manifold),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是 C∞ 类的微分流形。可微流形在物理学中非常重要。特殊种类的可微流形构成了经典力学、广义相对论和杨-米尔斯理论等物理理论的基础。可以为可微流形开发微积分。可微流形上的微积分研究被称为微分几何。

微分几何(differential geometry)作为一个独特的学科的出现一般归功于高斯(Carl Friedrich Gauss)和黎曼( Bernhard Riemann)。黎曼在哥廷根的著名的康复讲座中描述了多个面向。他通过在一个新的方向上改变给定对象的直观过程激发了多方面的想法,并且预先描述了协调系统和图表在随后形式发展中的作用:

物理学家马克士威(James Clerk Maxwell)和数学家库尔巴斯托罗(Gregorio Ricci-Curbastro)和齐维塔(Tullio Levi-Civita)的成果导入了张量分析和广义协变性的概念,它将内在几何属性识别为关于协调变换的不变量。这些想法在1912年爱因斯坦发展广义相对论理论时取得关键性的应用。外尔(Hermann Weyl)于1912年给出了微分流形的一个内在的定义。1930年代,该课题基础性方面的工作被哈斯勒·惠特尼(Hassler Whitney)等人厘清,使得从19世纪下半叶起开始发展起来的相关的直觉知识变得更精确,并通过微分几何和李群使微分流形的理论得到进一步的发展。

r {\displaystyle r} , )}的集合,其中α是覆盖 X的开放集合,并且对于每个索引α

α在n维真实空间的开放子集上的同胚。图册的转移映射(transition map)功能是

以图册来定义流形的概念是由夏尔·埃雷斯曼于1943年所提出。每个拓扑流形都有一个图册。-atlas是一个图册,其转换图是。拓扑流形具有0-atlas,并且通常-流形具有-atlas。连续图册(continuous atlas)是0图册,平滑图册是∞图册,分析图册(analytic atlas)是ω图册。

伪群(Pseudogroups)的概念提供了弹性的图册泛化(generalization of atlases),允许以统一的方式在流形上定义成各种不同的结构。伪群由拓扑空间S和由S的开放子集到S的其他开放子集的同态组成的集合Γ组成,使得

最后三个条件类似于一个群(group)的定义。注意,Γ不必是群,因为这些函数在S上不是全域定义的。

有时使用替代方法来赋予具有结构的流形是有用的。这里 = 1, 2, ..., ∞, 或ω为实分析流形(real analytic manifolds)。不考虑坐标图,可以从流形本身定义的功能开始。 的结构层(structure sheaf),表示为C,是一种函数 ,它为每个开放集 ⊂ 定义连续函数 → R的代数C()。

在n维可微分流形 上的实值函数f在点 ∈ 处被称为可微分 ,如果它在周围定义的任何坐标图中是可微分的。更准确地说,如果(, )是卡(chart),其中包含,是 的开放集合,而且 : → R是定义卡(chart)的映射,则f是可微分的,如果且仅当

在()处是可微分的。一般会有很多可用的卡(chart);然而,可微分的定义不取决于的卡(chart)的选择。从链式法则(chain rule)应用到一个卡(chart)和另一个图之间的转换函数,如果在的任何特定卡(chart)中都是可微分的,那么在的所有卡(chart)中都是可微分的。类似的情况适用于定义函数,平滑函数和分析函数。

点的切空间由该点处的可能的方向导数构成,并且具有与流形相同的维数n。对于一组(非奇异)坐标在本地点,坐标导数(coordinate derivatives) k = x k {\displaystyle \partial _{k}={\frac {\partial }{\partial x_{k}}}} 确定切线空间的完整基础。

向量空间的对偶空间(dual space)是矢量空间上的实值线性函数集合。余切空间处的一点是该点的切线空间的对偶位置,而余切丛(cotangent bundle)是所有余切空间的集合。

黎曼流形是一个可微分的流形,切空间以微分的方式产生内积。内积结构可以称为黎曼度量(metric)。该度量可以用于互变向量和辅助向量,并定义rank 4黎曼曲率张量。黎曼流形有长度、体积和角度的概念。任何可微流形都可以被称为黎曼结构。

一个共同的流形是具有封闭性的,非退化的symmetric 2-tensor形式的流形。这种情况迫使相似的流形是均匀的。在汉密尔顿力学中作为相位空间出现的反切丛(Cotangent bundles)是激励的例子,但是许多紧凑型流形也具有扭对称(symplectic)结构。

相关

  • 仡佬字陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 壬寅学制壬寅学制是中国近代教育史上制定的第一个新式学制系统,于光绪二十八年(壬寅年,公元1902年)由张百熙所拟定,不过并未实行。光绪二十八年(1902年),管学大臣张百熙拟定了《钦定学堂章程
  • 家兔家兔是指已经被人类驯化了的兔子,一般认为它们是由穴兔(学名:Oryctolagus cuniculus)所驯化而来。被人类驯化的家兔可以为人类提供肉类、皮毛。其温顺的性格也可用来当做宠物,家
  • 恒星日通常认为,恒星日(Sidereal Day)是地球上某点对某个恒星连续两次经过其上中天的时间间隔。地球自转的恒星周期,是指在天文学上以恒星为标准量度地球自转的周期,因为恒星通常被假设
  • 毛卷云毛卷云(学名:Cirrus fibratus,缩写: Ci fib ),是卷云的一种。毛卷云的外观类似直线或不规则的白色丝线,形态纤细,末端不呈钩状或簇状。在大多数情况下,毛卷云的“云丝”互不重叠。
  • 煤气灯煤气灯(英语:gas lamp)是灯一种,通过燃烧煤气进行发光。煤气灯中不一定是煤气,也可以燃烧其他气体,像是氢、甲烷、一氧化碳、丙烷、丁烷、乙炔、乙烯、天燃气,或者混合气体。未有电
  • 风险厌恶风险厌恶 (或译做风险趋避、风险规避, 英语:risk aversion)是一个经济学、金融学和心理学的一个概念,用来解释在不确定状况下消费者和投资者的行为。 风险厌恶是指一个人面对不
  • 新巴赫花精新巴赫花精系指爱德华巴赫医生所发现的三十八朵花精,用以调整自己的情绪、治愈自己身体的不适。使用的是所谓的顺势疗法,有别于现在常见的对抗疗法。花精疗法最早的记载可追溯
  • 2014年马来西亚羽毛球黄金大奖赛2014年马来西亚羽毛球黄金大奖赛为第6届马来西亚羽毛球黄金大奖赛,是2014年世界羽联大奖赛的其中一站。本届赛事于2014年3月25日至3月30日在马来西亚柔佛州的首府新山举行,并
  • 希道什·朱迪斯希道什·朱迪斯(匈牙利语:Hidasi Judit,1948年7月11日-),匈牙利语言学家, 布达佩斯商科大学国际关系学院的教授, 布达佩斯商科大学教授。是一名匈牙利女语言学家。她出生于1948年7