在几何学中,倒角是一种将棱替换为维面的操作,也可以视为切棱(又称裁边或截边)操作的一种。
对多面体进行倒角操作之后会使多面体中原有的棱转变成六边形面。在康威多面体表示法中,倒角用c表示,并且会使原有有e条棱的多面体产生2e个新顶点、3e条新棱和e个新的六边形面。
倒角多面体又称切棱多面体,是指多面体套用倒角变换后形成的立体图形。宫崎兴二、石井源久将这类立体称为切棱多面体。若将倒角视为将多面体的棱切除则如同截角一样根据不同的裁切深度会形成不一样的立体图形,其可以分为小切棱、中切棱和大切棱,大切棱又称最大切棱,其代表着切去棱并切至原本的面消失的情况
较常被探讨的倒角多面体为凸正多面体套用倒角变换后的像,其中,倒角四面体、倒角立方体和倒角十二面体在一些与富勒烯相关的研究被探讨过。
考虑到倒角利用不同深度的切棱操作完成时,可以多产生菱形十二面体、菱形三十面体等立体。
迭代多次倒角变换可以产生面数更多的多面体,每一次的倒角变换都会产生新的六边形面,且若原本的多面体是戈德堡多面体,则倒角变换会使戈德堡符号计为GP(m,n)的立体转变为新的戈德堡多面体,计为GP(2m,2n)。