圈量子重力

✍ dations ◷ 2025-02-23 16:42:24 #量子引力

圈量子重力论(loop quantum gravity,LQG),又译回圈量子引力论,英文别名圈引力(loop gravity)、量子几何学(quantum geometry);由阿贝·阿希提卡、李·斯莫林、卡洛·罗威利等人发展出来的量子引力理论,与弦理论同是当今将重力量子化最成功的理论。

利用量子场论的微扰理论来实现引力论的量子化的理论是不能被重整化的。如果主张时空只有四维而从广义相对论下手,结果可以把广义相对论转变成类似规范场论的理论,基本正则变量为阿希提卡-巴贝罗联络(英语:Ashtekar-Barbero Connection)而非度规张量,再以联络定义的平移算子(holonomy)以及通量变数(英语:flux variable)为基本变量来实现量子化。

在此理论下,时空描述是呈背景独立,由关系性循环织出的自旋网络铺成时空几何。网络中每条边的长度为普朗克长度。循环并不存在于时空中,而是以循环扭结的方式定义时空几何。在普朗克尺度下,时空几何充满随机的量子涨落,因此自旋网络又称为自旋泡沫。在此理论下,时空是离散的。

多数弦论学家相信无法在3+1维时空中,将引力量子化而不产生物质与能量有关的人工产物。然而弦论所预测的物质有关的人工产物也未被证明是否真的与实际观测到的物质不相同。不过若圈量子引力成功地成为引力的量子理论,则已知的物质场必须“事后”再加到此一理论中,而不是从理论中自然而然地出现。圈量子引力论的创始者之一李·斯莫林已思索过弦论与圈量子引力两者可能分别是一个终极理论两相不同的近似这样的可能性。

目前圈量子引力声称具有的成功之处有:

然而,这样的声称尚未被完全接受。虽然许多圈量子引力的核心成果都是来自于严谨的数学物理,不过它们的物理诠释仍多为推敲性质。圈量子引力是有可能成为引力或者是几何的改进方案;举例来说,(2)中的熵计算事实上是针对一种形式的“洞”来做的,这个洞可能是,也可能不是黑洞。

量子引力的其他方案,比如自旋泡沫模型,与圈量子引力密切相关。

圈量子引力的两个最重要的假设为

圈量子引力也假设量子论的基本原理是正确的。举例广义协变的理论有广义相对论,非广义协变的理论有狭义相对论(狭义协变),非背景独立的理论有牛顿力学(假设存在一条独立不变的时间轴),狭义相对论(其背景为闵可夫斯基空间,背景度规为闵可夫斯基度规),在背景电磁场中运动的电子的方程等,背景独立的理论有广义相对论,度规张量的值完全由理论决定。

圈量子引力可以从广义相对论的ADM表示法推导。ADM表示法的正则变数为三维空间的度规张量 q a b {\displaystyle q_{ab}} 以及其正则动量 P a b {\displaystyle P^{ab}} 。使用狄拉克约束处理方法可得ADM表示法有两个第一类约束:

此时用卡当的几何法,用三足(triad)一次型来表示度规张量,

e a i e b j δ i j = q a b {\displaystyle e_{a}^{i}e_{b}^{j}\delta _{ij}=q_{ab}}

假设与三足相容的联络为 Γ a i {\displaystyle \Gamma _{a}^{i}} (称为自旋联络),三维空间的外部曲率张量为 K a i {\displaystyle K_{a}^{i}} , γ {\displaystyle \gamma } 为任何实数,定义一个新的联络

A a i = Γ a i + γ K a i {\displaystyle A_{a}^{i}=\Gamma _{a}^{i}+\gamma K_{a}^{i}}

即阿希提卡-巴贝罗联络。其正则动量为 E i a = d e t ( e ) e i a {\displaystyle E_{i}^{a}=det(e)e_{i}^{a}} 。使用狄拉克约束处理方法可得三个第一类约束:

D a {\displaystyle D_{a}} 为阿希提卡-巴贝罗联络定义的协变微商, F a b i {\displaystyle F_{ab}^{i}} 为阿希提卡-巴贝罗联络定义的曲率张量.由于有高斯约束的关系,所以圈量子引力是一种类似规范场论的理论.

相关

  • 骨炎骨炎(英语:Osteitis)是骨的炎症。更具体地说,可以是以下其中一种情况:
  • 免疫分析免疫分析是一种利用抗体或抗原对某种溶液中的大分子或小分子进行测量的生物化学实验技术。免疫分析既可以定性确认某种大分子或小分子是否存在于受测溶液中,也可以定量测量某
  • 伦巴第-威尼斯王国伦巴第-威尼托王国(意大利语:Regno Lombardo-Veneto,德语:Lombardo-Venezianisches Königreich)是一个位于意大利北部的王国,并由当时的奥地利帝国所控制。此王国是根据欧洲列强
  • 五边石墨烯五边石墨烯是一种假设的碳的同素异形体。其分子结构以五边形组成,形似开罗五边形镶嵌。这种形态建基于分析和模拟,在2014年被提出。进一步的计算显示纯粹以此形态存在的碳是不
  • 乔瓦尼·莫尔加尼乔瓦尼·巴蒂什·莫尔加尼(Giovanni Battista Morgagni,1682年2月25日-1771年12月6日)意大利解剖学家和病理学家,他将病理解剖发展成为一门精确的科学,被誉为现代病理解剖学之父。
  • 巴丹死亡行军巴丹死亡行军(Bataan Death March (Filipino: Martsa ng Kamatayan sa Bataan; Japanese: バターン死の行进, Hepburn: Batān Shi no Kōshin))是第二次世界大战中著名的战争
  • 丁国栋丁国栋(?-1649年),明末清初西北甘肃起义领袖。甘州(今甘肃省张掖市)人。丁国栋原为明朝驻甘州等地军官,先降于李自成义军,顺治初年降清朝。顺治五年(1648年)三月,因对清“重满轻汉”和“
  • 紫金山路校区中国旅游管理干部学院(China Tourism Management Institute),校址位于天津市河西区紫金山路,于1987年经国家教委批准成立,直属于国家旅游局的旅游专业培训机构和高等院校。同时,它
  • 南岛语族南岛语系(英语:Austronesian languages)是主要由南岛民族所使用的语言,是世界现今唯一主要分布在岛屿上的一个语系,包括约1300种语言。其分布主要位于南太平洋群岛,包括台湾、海南
  • 克里夫兰县克里夫兰县(Cleveland County, Oklahoma)是美国奥克拉荷马州中部的一个县。面积1,446平方公里。根据美国2000年人口普查,共有人口208,016人。县治诺曼 (Norman)。州府奥克拉荷