法捷耶夫-波波夫鬼粒子

✍ dations ◷ 2024-12-23 04:00:29 #假想粒子

在物理学中,法捷耶夫-波波夫鬼粒子(Faddeev–Popov ghost),是一种为了保持路径积分表述的一致性而引入规范量子场论的附加场,以路德维希·法捷耶夫和维克多·波波夫(英语:维克多·波波夫)的名字命名。

法捷耶夫-波波夫鬼粒子之所以是必须要引入的,是因为在路径积分表述中,量子场论必须给出明确、非奇异的解,而由于规范对称性的存在,我们无法从大量的因规范变换而相关的物理上等价的不同解挑选出唯一的解。这个问题起源于路径积分重复考虑的规范对称相关的场组态,这些其实对应于相同的物理态;路径积分的测度包含一个系数,其不允许我们直接用一般的方法(例如费恩曼图方法)从原始的作用量得到各种结果。但是,如果我们修改原始作用量,添加进去一个额外的场,打破规范对称性,那么一般方法就可以使用了。这种场就叫做。这一方法被称作“法捷耶夫-波波夫方法”(见BRST量子化)。这种鬼场只是一种计算工具,对外部来说并不对应于任何一种实际粒子:鬼粒子在费恩曼图中只作为虚粒子出现——或者说,只对应于某些规范组态的缺失。但是它对于维持幺正性是至关重要的。

描述鬼粒子的公式和其具体形式与所选择的具体规范有关,但对于所有规范得到的实际结果是相同的。费恩曼-胡夫特规范(Feynman-t'Hooft gauge,库仑规范)是用于这个目的时最简单的规范,所以在这篇文章中我们都采用这种规范。

设A是规范联络形式, F = d A + A 2 {\displaystyle F=dA+A^{2}} 是曲率形式。杨-米尔斯场论的作用量是

S = Y M = t r ( F F ) = F μ ν a F a μ ν {\displaystyle S=\int YM=\int tr(F\wedge *F)=\int F_{\mu \nu }^{a}F^{a\mu \nu }}

泛函积分是

Z = D A exp ( i S ( A ) ) {\displaystyle Z=\int DA\exp(iS(A))}

α = a α a t a T G {\displaystyle \alpha =\sum _{a}\alpha ^{a}t^{a}\in TG}

属于规范群G的李代数TG。则 g = e i α G {\displaystyle g=e^{i\alpha }\in G} 以及

A A α = g ( d + A ) g 1 A + d D α {\displaystyle A\to A_{\alpha }=g(d+A)g^{-1}\approx A+d_{D}\alpha }

d D {\displaystyle d_{D}} 是外共变导数。若 f ( A ) {\displaystyle f(A)} 是规范固定函数,则

D α   δ ( f ( A α ) ) det ( δ f ( A α ) δ α ) = 1 {\displaystyle \int D\alpha \ \delta (f(A_{\alpha }))\det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})=1}

这是有限维公式的推广,也参看狄拉克δ函数和雅可比行列式。然后

Z = D A   D α   δ ( f ( A α ) ) det ( δ f ( A α ) δ α ) e i S ( A ) {\displaystyle Z=\int DA\ D\alpha \ \delta (f(A_{\alpha }))\det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})e^{iS(A)}}

通过变量的变化 A A α {\displaystyle A\to A_{\alpha }} ,拉氏量YM和作用量是规范不变: S ( A ) = S ( A α ) {\displaystyle S(A)=S(A_{\alpha })} 。而且测度不变 D A α = D A {\displaystyle DA_{\alpha }=DA} 。所以因为泛函的富比尼定理:

Z = ( D α )   D A   δ ( f ( A ) ) det ( δ f ( A α ) δ α ) e i S ( A ) {\displaystyle Z=(\int D\alpha )\ \int DA\ \delta (f(A))\det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})e^{iS(A)}}

G = U ( 1 ) {\displaystyle G=U(1)} ,这是电磁理论,规范变换成为 A α = A + d α {\displaystyle A_{\alpha }=A+d\alpha } ,可以选择

f ( A ) = A ω {\displaystyle f(A)=\partial A-\omega }

δ f ( A α ) δ α = 2 {\displaystyle {\frac {\delta f(A_{\alpha })}{\delta \alpha }}=\partial ^{2}}

上面不依赖 α {\displaystyle \alpha } 或A。则泛函积分等于

Z = det ( 2 ) ( D α ) D A   δ ( A ω ) e i S ( A ) = C D A   δ ( A ω ) e i S ( A ) = Z ω {\displaystyle Z=\det(\partial ^{2})(\int D\alpha )\int DA\ \delta (\partial A-\omega )e^{iS(A)}=C\int DA\ \delta (\partial A-\omega )e^{iS(A)}=Z_{\omega }}

注意配分函数 Z 不依赖 ω {\displaystyle \omega } ,所以可以使用线性组合表述Z。通过泛函的富比尼定理:

Z = N ( ξ ) D ω   exp ( i ω 2 / 2 ξ )   Z ω {\displaystyle Z=N(\xi )\int D\omega \ \exp(-i\int \omega ^{2}/2\xi )\ Z_{\omega }}

= C D A   e i S ( A ) D ω   exp ( i ω 2 / 2 ξ )   δ ( A ω ) {\displaystyle =C'\int DA\ e^{iS(A)}\int D\omega \ \exp(-i\int \omega ^{2}/2\xi )\ \delta (\partial A-\omega )}

= C D A   exp ( i S ( A ) i ( A ) 2 / 2 ξ ) {\displaystyle =C'\int DA\ \exp(iS(A)-i\int (\partial A)^{2}/2\xi )}

在电磁理论中,杨米作用量成为

S ( A ) = ( d A ) 2 = ( A ) 2 / 4 = A 2 A / 4 {\displaystyle S(A)=-\int (dA)^{2}=-\int (\partial A)^{2}/4=\int A\partial ^{2}A/4}

所以传播子是

D μ ν ( k ) = i k 2 + i ϵ ( g μ ν ( 1 ξ ) k μ k ν k 2 ) {\displaystyle D_{\mu \nu }(k)={\frac {-i}{k^{2}+i\epsilon }}(g_{\mu \nu }-(1-\xi ){\frac {k_{\mu }k_{\nu }}{k^{2}}})}

上文是法捷耶夫-波波夫方法(Faddeev-Popov method,FP办法),这个办法在其他数学和无理分支有应用。量子电动力学没有FP鬼子。

但是非阿贝尔群的杨米尔斯场论有FP鬼子。选择

f ( A a ) = μ A μ a ω a {\displaystyle f(A^{a})=\partial ^{\mu }A_{\mu }^{a}-\omega ^{a}}

像上文的冒险一样,格林函数(correlation函数)是

A μ a ( x ) A ν b ( y ) = D μ ν ( x y ) a b = d 4 k ( 2 π ) 4 i e i k ( x y ) k 2 + i ϵ δ a b ( g μ ν ( 1 ξ ) k μ k ν k 2 ) {\displaystyle \langle A_{\mu }^{a}(x)A_{\nu }^{b}(y)\rangle =D_{\mu \nu }(x-y)^{ab}=\int {\frac {d^{4}k}{(2\pi )^{4}}}{\frac {-ie^{-ik(x-y)}}{k^{2}+i\epsilon }}\delta ^{ab}(g_{\mu \nu }-(1-\xi ){\frac {k_{\mu }k_{\nu }}{k^{2}}})}

ξ = 1 {\displaystyle \xi =1} 是费恩曼-特·胡夫特规范(Feynman-t' Hooft gauge)。但是这一次雅可比行列式是

det ( δ f ( A α ) δ α ) = det ( μ D μ ) {\displaystyle \det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})=\det(\partial ^{\mu }D_{\mu })}

依赖规范场A。其中规范导数是

d D = D μ d x μ {\displaystyle d_{D}=D_{\mu }dx^{\mu }}

可以使用费米积分(英语:Berezin integral)(高斯积分)表述

det ( μ D μ ) = D c D c ¯ exp ( i c ¯ ( μ D μ ) c ) = D c D c ¯ exp ( i S ( c , c ¯ ) ) {\displaystyle \det(\partial ^{\mu }D_{\mu })=\int DcD{\bar {c}}\exp(i\int {\bar {c}}(-\partial ^{\mu }D_{\mu })c)=\int DcD{\bar {c}}\exp(iS(c,{\bar {c}}))}

设李代数TG是n维的,则其中 c ( x ) = ( c a ( x ) , c b ( x ) , ) C n {\displaystyle c(x)=(c_{a}(x),c_{b}(x),\ldots )\in \mathbb {C} ^{n}} 是n维旋量,描述鬼粒子。 D μ a b {\displaystyle D_{\mu }^{ab}} 是矩阵算子。则鬼子作用量是

S ( c , c ¯ ) = c ¯ a ( μ D μ a b ) c b = c ¯ a ( δ a c μ μ g μ f a b c A μ b ) c c {\displaystyle S(c,{\bar {c}})=\int {\bar {c}}_{a}(-\partial ^{\mu }D_{\mu }^{ab})c_{b}=\int {\bar {c}}_{a}(-\delta ^{ac}\partial ^{\mu }\partial _{\mu }-g\partial ^{\mu }f^{abc}A_{\mu }^{b})c_{c}}

鬼子传播子是

c a ( x ) c ¯ b ( y ) = d 4 k ( 2 π ) 4 i k 2 δ a b e i k ( x y ) {\displaystyle \langle c_{a}(x){\bar {c}}_{b}(y)\rangle =\int {\frac {d^{4}k}{(2\pi )^{4}}}{\frac {i}{k^{2}}}\delta _{ab}e^{-ik(x-y)}}

也有高价相互作用费恩曼图(若耦合常数g很小)。终于的拉氏量是

L = 1 4 ( F μ ν a ) 2 + 1 2 ξ ( A ) 2 + ψ ¯ ( i D / m ) ψ + c ¯

相关

  • 西部马脑炎病毒西部马脑炎病毒(英文:Western Equine Encephalitis,简称:WEE)是经由蚊子所感染的病毒,主要感染马类,但也可以感染人。西部马脑炎病毒和东部马脑炎病毒一样都属脑炎病毒的一种。第
  • 哈得逊河哈德逊河(英语:Hudson River,又译赫逊河)是美国纽约州的大河,长507公里,发源于纽约上州阿第伦达克山脉,上游分出莫华克河,西接伊利运河(可达五大湖),流经哈德逊河谷后汇入纽约港,是纽约
  • 桃蚜桃蚜(学名:Myzus persicae)为常蚜科瘤蚜属下的一个种。
  • 没有名字的甜点店许富翔张榕容、刘以豪、修杰楷、黄荻钧磬石数位媒体有限公司前景娱乐有限公司台湾台北市、新北市、台中市 法国巴黎《没有名字的甜点店》(法语:Amour et Pâtisserie),由磬石数
  • 海牛目 Sirenia small/small海牛目(学名:Sirenia)在海洋哺乳动物中是相当特殊的一群,所属物种均为植食性,以海草与其他水生植物为食。现存共有四种海牛目动物,分为两个科:海牛科(Trichechidae)及儒艮科(Dugongida
  • 20国集团二十国集团(英语:Group of Twenty,缩写:G20)是一个国际经济合作论坛,于1999年12月16日在德国柏林成立,属于布雷顿森林体系框架内对话的一种机制,由七国集团(加拿大、美国、英国、法国
  • 基础医学院北京大学基础医学院是隶属于北京大学医学部的一所学院,正式成立于2000年。前身是1954年9月14日成立的北京医学院基础医学部,1960年2月改名基础医学系。1985年5月北京医科大学
  • 严顺开严顺开1937年6月6日-2017年10月16日,生于上海市,中华人民共和国演员。1963年严顺开毕业于中央戏剧学院表演系,被分配到上海滑稽剧团任演员。1981年初次登上银幕,主演电影《阿Q正
  • 多米尼加总统阿根廷总统 · 巴拉圭总统 · 巴拿马总统 · 巴西总统(沿革:君主) · 加拿大君主(总督) · 秘鲁总统 · 玻利维亚总统 · 多米尼加总统 · 多米尼克总统 · 厄瓜多尔总统 · 哥
  • 按市域人口排列的世界城市列表本条目列出了“市域”概念定义下的世界上人口最多的城市。市域(city proper)是由法定或政治边界和定义的地方,是常以某种形式的地方政府为特征的行政上认可的城市。 市域及其边