法捷耶夫-波波夫鬼粒子

✍ dations ◷ 2025-09-16 15:34:40 #假想粒子

在物理学中,法捷耶夫-波波夫鬼粒子(Faddeev–Popov ghost),是一种为了保持路径积分表述的一致性而引入规范量子场论的附加场,以路德维希·法捷耶夫和维克多·波波夫(英语:维克多·波波夫)的名字命名。

法捷耶夫-波波夫鬼粒子之所以是必须要引入的,是因为在路径积分表述中,量子场论必须给出明确、非奇异的解,而由于规范对称性的存在,我们无法从大量的因规范变换而相关的物理上等价的不同解挑选出唯一的解。这个问题起源于路径积分重复考虑的规范对称相关的场组态,这些其实对应于相同的物理态;路径积分的测度包含一个系数,其不允许我们直接用一般的方法(例如费恩曼图方法)从原始的作用量得到各种结果。但是,如果我们修改原始作用量,添加进去一个额外的场,打破规范对称性,那么一般方法就可以使用了。这种场就叫做。这一方法被称作“法捷耶夫-波波夫方法”(见BRST量子化)。这种鬼场只是一种计算工具,对外部来说并不对应于任何一种实际粒子:鬼粒子在费恩曼图中只作为虚粒子出现——或者说,只对应于某些规范组态的缺失。但是它对于维持幺正性是至关重要的。

描述鬼粒子的公式和其具体形式与所选择的具体规范有关,但对于所有规范得到的实际结果是相同的。费恩曼-胡夫特规范(Feynman-t'Hooft gauge,库仑规范)是用于这个目的时最简单的规范,所以在这篇文章中我们都采用这种规范。

设A是规范联络形式, F = d A + A 2 {\displaystyle F=dA+A^{2}} 是曲率形式。杨-米尔斯场论的作用量是

S = Y M = t r ( F F ) = F μ ν a F a μ ν {\displaystyle S=\int YM=\int tr(F\wedge *F)=\int F_{\mu \nu }^{a}F^{a\mu \nu }}

泛函积分是

Z = D A exp ( i S ( A ) ) {\displaystyle Z=\int DA\exp(iS(A))}

α = a α a t a T G {\displaystyle \alpha =\sum _{a}\alpha ^{a}t^{a}\in TG}

属于规范群G的李代数TG。则 g = e i α G {\displaystyle g=e^{i\alpha }\in G} 以及

A A α = g ( d + A ) g 1 A + d D α {\displaystyle A\to A_{\alpha }=g(d+A)g^{-1}\approx A+d_{D}\alpha }

d D {\displaystyle d_{D}} 是外共变导数。若 f ( A ) {\displaystyle f(A)} 是规范固定函数,则

D α   δ ( f ( A α ) ) det ( δ f ( A α ) δ α ) = 1 {\displaystyle \int D\alpha \ \delta (f(A_{\alpha }))\det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})=1}

这是有限维公式的推广,也参看狄拉克δ函数和雅可比行列式。然后

Z = D A   D α   δ ( f ( A α ) ) det ( δ f ( A α ) δ α ) e i S ( A ) {\displaystyle Z=\int DA\ D\alpha \ \delta (f(A_{\alpha }))\det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})e^{iS(A)}}

通过变量的变化 A A α {\displaystyle A\to A_{\alpha }} ,拉氏量YM和作用量是规范不变: S ( A ) = S ( A α ) {\displaystyle S(A)=S(A_{\alpha })} 。而且测度不变 D A α = D A {\displaystyle DA_{\alpha }=DA} 。所以因为泛函的富比尼定理:

Z = ( D α )   D A   δ ( f ( A ) ) det ( δ f ( A α ) δ α ) e i S ( A ) {\displaystyle Z=(\int D\alpha )\ \int DA\ \delta (f(A))\det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})e^{iS(A)}}

G = U ( 1 ) {\displaystyle G=U(1)} ,这是电磁理论,规范变换成为 A α = A + d α {\displaystyle A_{\alpha }=A+d\alpha } ,可以选择

f ( A ) = A ω {\displaystyle f(A)=\partial A-\omega }

δ f ( A α ) δ α = 2 {\displaystyle {\frac {\delta f(A_{\alpha })}{\delta \alpha }}=\partial ^{2}}

上面不依赖 α {\displaystyle \alpha } 或A。则泛函积分等于

Z = det ( 2 ) ( D α ) D A   δ ( A ω ) e i S ( A ) = C D A   δ ( A ω ) e i S ( A ) = Z ω {\displaystyle Z=\det(\partial ^{2})(\int D\alpha )\int DA\ \delta (\partial A-\omega )e^{iS(A)}=C\int DA\ \delta (\partial A-\omega )e^{iS(A)}=Z_{\omega }}

注意配分函数 Z 不依赖 ω {\displaystyle \omega } ,所以可以使用线性组合表述Z。通过泛函的富比尼定理:

Z = N ( ξ ) D ω   exp ( i ω 2 / 2 ξ )   Z ω {\displaystyle Z=N(\xi )\int D\omega \ \exp(-i\int \omega ^{2}/2\xi )\ Z_{\omega }}

= C D A   e i S ( A ) D ω   exp ( i ω 2 / 2 ξ )   δ ( A ω ) {\displaystyle =C'\int DA\ e^{iS(A)}\int D\omega \ \exp(-i\int \omega ^{2}/2\xi )\ \delta (\partial A-\omega )}

= C D A   exp ( i S ( A ) i ( A ) 2 / 2 ξ ) {\displaystyle =C'\int DA\ \exp(iS(A)-i\int (\partial A)^{2}/2\xi )}

在电磁理论中,杨米作用量成为

S ( A ) = ( d A ) 2 = ( A ) 2 / 4 = A 2 A / 4 {\displaystyle S(A)=-\int (dA)^{2}=-\int (\partial A)^{2}/4=\int A\partial ^{2}A/4}

所以传播子是

D μ ν ( k ) = i k 2 + i ϵ ( g μ ν ( 1 ξ ) k μ k ν k 2 ) {\displaystyle D_{\mu \nu }(k)={\frac {-i}{k^{2}+i\epsilon }}(g_{\mu \nu }-(1-\xi ){\frac {k_{\mu }k_{\nu }}{k^{2}}})}

上文是法捷耶夫-波波夫方法(Faddeev-Popov method,FP办法),这个办法在其他数学和无理分支有应用。量子电动力学没有FP鬼子。

但是非阿贝尔群的杨米尔斯场论有FP鬼子。选择

f ( A a ) = μ A μ a ω a {\displaystyle f(A^{a})=\partial ^{\mu }A_{\mu }^{a}-\omega ^{a}}

像上文的冒险一样,格林函数(correlation函数)是

A μ a ( x ) A ν b ( y ) = D μ ν ( x y ) a b = d 4 k ( 2 π ) 4 i e i k ( x y ) k 2 + i ϵ δ a b ( g μ ν ( 1 ξ ) k μ k ν k 2 ) {\displaystyle \langle A_{\mu }^{a}(x)A_{\nu }^{b}(y)\rangle =D_{\mu \nu }(x-y)^{ab}=\int {\frac {d^{4}k}{(2\pi )^{4}}}{\frac {-ie^{-ik(x-y)}}{k^{2}+i\epsilon }}\delta ^{ab}(g_{\mu \nu }-(1-\xi ){\frac {k_{\mu }k_{\nu }}{k^{2}}})}

ξ = 1 {\displaystyle \xi =1} 是费恩曼-特·胡夫特规范(Feynman-t' Hooft gauge)。但是这一次雅可比行列式是

det ( δ f ( A α ) δ α ) = det ( μ D μ ) {\displaystyle \det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})=\det(\partial ^{\mu }D_{\mu })}

依赖规范场A。其中规范导数是

d D = D μ d x μ {\displaystyle d_{D}=D_{\mu }dx^{\mu }}

可以使用费米积分(英语:Berezin integral)(高斯积分)表述

det ( μ D μ ) = D c D c ¯ exp ( i c ¯ ( μ D μ ) c ) = D c D c ¯ exp ( i S ( c , c ¯ ) ) {\displaystyle \det(\partial ^{\mu }D_{\mu })=\int DcD{\bar {c}}\exp(i\int {\bar {c}}(-\partial ^{\mu }D_{\mu })c)=\int DcD{\bar {c}}\exp(iS(c,{\bar {c}}))}

设李代数TG是n维的,则其中 c ( x ) = ( c a ( x ) , c b ( x ) , ) C n {\displaystyle c(x)=(c_{a}(x),c_{b}(x),\ldots )\in \mathbb {C} ^{n}} 是n维旋量,描述鬼粒子。 D μ a b {\displaystyle D_{\mu }^{ab}} 是矩阵算子。则鬼子作用量是

S ( c , c ¯ ) = c ¯ a ( μ D μ a b ) c b = c ¯ a ( δ a c μ μ g μ f a b c A μ b ) c c {\displaystyle S(c,{\bar {c}})=\int {\bar {c}}_{a}(-\partial ^{\mu }D_{\mu }^{ab})c_{b}=\int {\bar {c}}_{a}(-\delta ^{ac}\partial ^{\mu }\partial _{\mu }-g\partial ^{\mu }f^{abc}A_{\mu }^{b})c_{c}}

鬼子传播子是

c a ( x ) c ¯ b ( y ) = d 4 k ( 2 π ) 4 i k 2 δ a b e i k ( x y ) {\displaystyle \langle c_{a}(x){\bar {c}}_{b}(y)\rangle =\int {\frac {d^{4}k}{(2\pi )^{4}}}{\frac {i}{k^{2}}}\delta _{ab}e^{-ik(x-y)}}

也有高价相互作用费恩曼图(若耦合常数g很小)。终于的拉氏量是

L = 1 4 ( F μ ν a ) 2 + 1 2 ξ ( A ) 2 + ψ ¯ ( i D / m ) ψ + c ¯

相关

  • 弥漫星云弥漫星云,意思是朦胧,云雾。弥漫星云没有规则的形状,也没有明显的边界。实际上,除环状对称的行星状星云外,所有的星云都可以称作形状不规则的弥漫星云。弥漫星云平均直径大约几十
  • 埃尔温·隆美尔曼佛雷德·隆美尔(英语:Manfred Rommel)(子)埃尔温·约翰内斯·尤根·隆美尔(德语:Erwin Johannes Eugen Rommel,1891年11月15日-1944年10月14日)是第二次世界大战一位著名的德国陆军
  • 磷酸二氢铵磷酸二氢铵又称磷酸一铵,是一种白色的晶体,分子式为NH4H2PO4,可溶于水,微溶于乙醇。加热会分解成偏磷酸铵(NH4PO3),可用氨水和磷酸反应制成,主要用于制造肥料及灭火器。www.chemyq(中
  • 相交在数学中,相交是两个几何图形之间关系的一种。两个图形相交是指它们有公共的部分,或者说同时属于两者的点的集合不是空集。若两个几何图形在某个地方有且只有一个交点,则可以称
  • 傅京孙傅京孙(英语:King-Sun Fu,1930年10月2日-1985年4月29日),美籍华裔科学家,模式识别与机器智能领域的先驱之一,被誉为“模式识别之父”。他参与创办了国际模式识别协会(英语:Internation
  • 中锋中锋(英语:Center),俗称第五人/五号位置(the five)或大个子(big man),是篮球比赛阵容中的一个位置;一般都由队中最高的球员担任,传统上强调篮下的防守以及篮板球的保护。由于具有身高的
  • 阿纳海姆鸭阿纳海姆鸭(Anaheim Ducks)是一支位于美国南加州阿纳海姆的职业冰球队,隶属于国家冰球联盟西部联会太平洋分区。安纳海姆鸭队于1993年由华特迪士尼公司赞助创建,原称安纳海姆霸
  • 托马斯·R·马歇尔托马斯·赖利·马歇尔(英语:Thomas Riley Marshall,1854年3月14日-1925年6月1日)是美国民主党政治家,曾于1913至1921年伍德罗·威尔逊执政期间担任第28任美国副总统。马歇尔曾是印
  • 大和煮大和煮(日语:やまとに )是一种将肉类加酱油、砂糖、生姜等调味料炖煮而成的日式料理,一般以罐头的形式面市。大和煮主要以牛肉为原料,但也适合料理鲸肉等异味较重的肉类。自明治
  • 埃尔德什·帕尔埃尔德什·帕尔(匈牙利语:Erdős Pál,1913年3月26日-1996年9月20日),其音读作air-dish,匈牙利语中的意思是来自山林,英语中作保罗·埃尔德什(Paul Erdős)。匈牙利籍犹太人,发表论文高