法捷耶夫-波波夫鬼粒子

✍ dations ◷ 2025-05-21 03:49:41 #假想粒子

在物理学中,法捷耶夫-波波夫鬼粒子(Faddeev–Popov ghost),是一种为了保持路径积分表述的一致性而引入规范量子场论的附加场,以路德维希·法捷耶夫和维克多·波波夫(英语:维克多·波波夫)的名字命名。

法捷耶夫-波波夫鬼粒子之所以是必须要引入的,是因为在路径积分表述中,量子场论必须给出明确、非奇异的解,而由于规范对称性的存在,我们无法从大量的因规范变换而相关的物理上等价的不同解挑选出唯一的解。这个问题起源于路径积分重复考虑的规范对称相关的场组态,这些其实对应于相同的物理态;路径积分的测度包含一个系数,其不允许我们直接用一般的方法(例如费恩曼图方法)从原始的作用量得到各种结果。但是,如果我们修改原始作用量,添加进去一个额外的场,打破规范对称性,那么一般方法就可以使用了。这种场就叫做。这一方法被称作“法捷耶夫-波波夫方法”(见BRST量子化)。这种鬼场只是一种计算工具,对外部来说并不对应于任何一种实际粒子:鬼粒子在费恩曼图中只作为虚粒子出现——或者说,只对应于某些规范组态的缺失。但是它对于维持幺正性是至关重要的。

描述鬼粒子的公式和其具体形式与所选择的具体规范有关,但对于所有规范得到的实际结果是相同的。费恩曼-胡夫特规范(Feynman-t'Hooft gauge,库仑规范)是用于这个目的时最简单的规范,所以在这篇文章中我们都采用这种规范。

设A是规范联络形式, F = d A + A 2 {\displaystyle F=dA+A^{2}} 是曲率形式。杨-米尔斯场论的作用量是

S = Y M = t r ( F F ) = F μ ν a F a μ ν {\displaystyle S=\int YM=\int tr(F\wedge *F)=\int F_{\mu \nu }^{a}F^{a\mu \nu }}

泛函积分是

Z = D A exp ( i S ( A ) ) {\displaystyle Z=\int DA\exp(iS(A))}

α = a α a t a T G {\displaystyle \alpha =\sum _{a}\alpha ^{a}t^{a}\in TG}

属于规范群G的李代数TG。则 g = e i α G {\displaystyle g=e^{i\alpha }\in G} 以及

A A α = g ( d + A ) g 1 A + d D α {\displaystyle A\to A_{\alpha }=g(d+A)g^{-1}\approx A+d_{D}\alpha }

d D {\displaystyle d_{D}} 是外共变导数。若 f ( A ) {\displaystyle f(A)} 是规范固定函数,则

D α   δ ( f ( A α ) ) det ( δ f ( A α ) δ α ) = 1 {\displaystyle \int D\alpha \ \delta (f(A_{\alpha }))\det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})=1}

这是有限维公式的推广,也参看狄拉克δ函数和雅可比行列式。然后

Z = D A   D α   δ ( f ( A α ) ) det ( δ f ( A α ) δ α ) e i S ( A ) {\displaystyle Z=\int DA\ D\alpha \ \delta (f(A_{\alpha }))\det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})e^{iS(A)}}

通过变量的变化 A A α {\displaystyle A\to A_{\alpha }} ,拉氏量YM和作用量是规范不变: S ( A ) = S ( A α ) {\displaystyle S(A)=S(A_{\alpha })} 。而且测度不变 D A α = D A {\displaystyle DA_{\alpha }=DA} 。所以因为泛函的富比尼定理:

Z = ( D α )   D A   δ ( f ( A ) ) det ( δ f ( A α ) δ α ) e i S ( A ) {\displaystyle Z=(\int D\alpha )\ \int DA\ \delta (f(A))\det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})e^{iS(A)}}

G = U ( 1 ) {\displaystyle G=U(1)} ,这是电磁理论,规范变换成为 A α = A + d α {\displaystyle A_{\alpha }=A+d\alpha } ,可以选择

f ( A ) = A ω {\displaystyle f(A)=\partial A-\omega }

δ f ( A α ) δ α = 2 {\displaystyle {\frac {\delta f(A_{\alpha })}{\delta \alpha }}=\partial ^{2}}

上面不依赖 α {\displaystyle \alpha } 或A。则泛函积分等于

Z = det ( 2 ) ( D α ) D A   δ ( A ω ) e i S ( A ) = C D A   δ ( A ω ) e i S ( A ) = Z ω {\displaystyle Z=\det(\partial ^{2})(\int D\alpha )\int DA\ \delta (\partial A-\omega )e^{iS(A)}=C\int DA\ \delta (\partial A-\omega )e^{iS(A)}=Z_{\omega }}

注意配分函数 Z 不依赖 ω {\displaystyle \omega } ,所以可以使用线性组合表述Z。通过泛函的富比尼定理:

Z = N ( ξ ) D ω   exp ( i ω 2 / 2 ξ )   Z ω {\displaystyle Z=N(\xi )\int D\omega \ \exp(-i\int \omega ^{2}/2\xi )\ Z_{\omega }}

= C D A   e i S ( A ) D ω   exp ( i ω 2 / 2 ξ )   δ ( A ω ) {\displaystyle =C'\int DA\ e^{iS(A)}\int D\omega \ \exp(-i\int \omega ^{2}/2\xi )\ \delta (\partial A-\omega )}

= C D A   exp ( i S ( A ) i ( A ) 2 / 2 ξ ) {\displaystyle =C'\int DA\ \exp(iS(A)-i\int (\partial A)^{2}/2\xi )}

在电磁理论中,杨米作用量成为

S ( A ) = ( d A ) 2 = ( A ) 2 / 4 = A 2 A / 4 {\displaystyle S(A)=-\int (dA)^{2}=-\int (\partial A)^{2}/4=\int A\partial ^{2}A/4}

所以传播子是

D μ ν ( k ) = i k 2 + i ϵ ( g μ ν ( 1 ξ ) k μ k ν k 2 ) {\displaystyle D_{\mu \nu }(k)={\frac {-i}{k^{2}+i\epsilon }}(g_{\mu \nu }-(1-\xi ){\frac {k_{\mu }k_{\nu }}{k^{2}}})}

上文是法捷耶夫-波波夫方法(Faddeev-Popov method,FP办法),这个办法在其他数学和无理分支有应用。量子电动力学没有FP鬼子。

但是非阿贝尔群的杨米尔斯场论有FP鬼子。选择

f ( A a ) = μ A μ a ω a {\displaystyle f(A^{a})=\partial ^{\mu }A_{\mu }^{a}-\omega ^{a}}

像上文的冒险一样,格林函数(correlation函数)是

A μ a ( x ) A ν b ( y ) = D μ ν ( x y ) a b = d 4 k ( 2 π ) 4 i e i k ( x y ) k 2 + i ϵ δ a b ( g μ ν ( 1 ξ ) k μ k ν k 2 ) {\displaystyle \langle A_{\mu }^{a}(x)A_{\nu }^{b}(y)\rangle =D_{\mu \nu }(x-y)^{ab}=\int {\frac {d^{4}k}{(2\pi )^{4}}}{\frac {-ie^{-ik(x-y)}}{k^{2}+i\epsilon }}\delta ^{ab}(g_{\mu \nu }-(1-\xi ){\frac {k_{\mu }k_{\nu }}{k^{2}}})}

ξ = 1 {\displaystyle \xi =1} 是费恩曼-特·胡夫特规范(Feynman-t' Hooft gauge)。但是这一次雅可比行列式是

det ( δ f ( A α ) δ α ) = det ( μ D μ ) {\displaystyle \det({\frac {\delta f(A_{\alpha })}{\delta \alpha }})=\det(\partial ^{\mu }D_{\mu })}

依赖规范场A。其中规范导数是

d D = D μ d x μ {\displaystyle d_{D}=D_{\mu }dx^{\mu }}

可以使用费米积分(英语:Berezin integral)(高斯积分)表述

det ( μ D μ ) = D c D c ¯ exp ( i c ¯ ( μ D μ ) c ) = D c D c ¯ exp ( i S ( c , c ¯ ) ) {\displaystyle \det(\partial ^{\mu }D_{\mu })=\int DcD{\bar {c}}\exp(i\int {\bar {c}}(-\partial ^{\mu }D_{\mu })c)=\int DcD{\bar {c}}\exp(iS(c,{\bar {c}}))}

设李代数TG是n维的,则其中 c ( x ) = ( c a ( x ) , c b ( x ) , ) C n {\displaystyle c(x)=(c_{a}(x),c_{b}(x),\ldots )\in \mathbb {C} ^{n}} 是n维旋量,描述鬼粒子。 D μ a b {\displaystyle D_{\mu }^{ab}} 是矩阵算子。则鬼子作用量是

S ( c , c ¯ ) = c ¯ a ( μ D μ a b ) c b = c ¯ a ( δ a c μ μ g μ f a b c A μ b ) c c {\displaystyle S(c,{\bar {c}})=\int {\bar {c}}_{a}(-\partial ^{\mu }D_{\mu }^{ab})c_{b}=\int {\bar {c}}_{a}(-\delta ^{ac}\partial ^{\mu }\partial _{\mu }-g\partial ^{\mu }f^{abc}A_{\mu }^{b})c_{c}}

鬼子传播子是

c a ( x ) c ¯ b ( y ) = d 4 k ( 2 π ) 4 i k 2 δ a b e i k ( x y ) {\displaystyle \langle c_{a}(x){\bar {c}}_{b}(y)\rangle =\int {\frac {d^{4}k}{(2\pi )^{4}}}{\frac {i}{k^{2}}}\delta _{ab}e^{-ik(x-y)}}

也有高价相互作用费恩曼图(若耦合常数g很小)。终于的拉氏量是

L = 1 4 ( F μ ν a ) 2 + 1 2 ξ ( A ) 2 + ψ ¯ ( i D / m ) ψ + c ¯

相关

  • 外囊菌纲Protomycetaceae Taphrinaceae外囊菌纲是子囊菌门外囊菌亚门 (Taphrinomycotina) 一类较高等的真菌。
  • 小强“强”原本是对于名字带有强字的昵称,后来因周星驰主演的电影而成为对蟑螂的别名。有些人亦会以小强自称或被昵称,或称里照宣。“小强”这个别名源于周星驰的电影。在1993年的
  • 布朗大学1764年(美洲新英格兰英属罗德岛和普罗维登斯殖民地学院) 1805年(布朗大学)布朗大学(英语:Brown University,拉丁语:Universitas Brunensis),简称布朗(英语:Brown),位于美国罗德岛州普罗维
  • 平安时代平安时代(日语:平安時代/へいあんじだい heianjidai,英语:Heian Period)是日本古代的最后一个历史时代,它从794年桓武天皇将首都从长冈京(784年至794年)移到平安京(现在的京都)开始,到1
  • 新巴塞尔资本协定新巴塞尔资本协定(英文简称Basel II),是由国际清算银行下的巴塞尔银行监理委员会(BCBS)所促成,内容针对1988年的旧巴塞尔资本协定(Basel I)做了大幅修改,以期标准化国际上的风险控管
  • World Register of Marine Species世界海洋物种目录(英语:World Register of Marine Species,缩写为WoRMS),是一个生物学数据库,致力于提供一个具有公信力与全面性的海洋物种目录。世界海洋物种目录不仅收录生物的
  • 德川家纲德川家纲(1641年9月7日-1680年6月4日),德川幕府第四代将军。三代将军德川家光的长男,母亲是侧室阿乐之方(宝树院),幼名为竹千代。御台所为伏见宫贞清亲王的女儿浅宫显子女王。据说家
  • 张延登《长白仙踪图》之张延登像,明崔子忠绘,现藏于上海博物馆张延登(1566年-1641年),字济美,号华东,山东邹平人,明朝政治人物,同进士出身。万历二十年(1592年)壬辰科同进士,授官河南内黄县知县
  • 冯·迪索哈尼亚·莱丽 文森特·辛克莱尔 波琳·辛克莱范·迪塞尔(英语:Vin Diesel,1967年7月18日-),原名马克·辛克莱·文森特(Mark Sinclair Vincent),美国演员,出生于阿拉米达县,父亲有意
  • 攻击直升机攻击直升机(attack helicopter)是武装直升机的一种,是一种装备进攻性武器的军用直升机,专门用于攻击地面目标如步兵、装甲车辆和建筑,其主要武器为机炮和机枪、火箭以及精密制导