首页 >
中子毒物
✍ dations ◷ 2024-12-22 15:17:53 #中子毒物
中子毒物(英语:Neutron poison)是一种具有大中子吸收截面的物质,由于会对连锁反应造成负面影响,而被称为“毒物”,常应用于反应堆物理计算中。在反应堆中,我们尽可能希望中子由可裂变物质吸收,使之发生核分裂。然而,一些物质具有强烈的中子捕获现象,会导致降低反应器运转的反应性。有些毒物会在反应器运转过程中吸收中子而消耗掉,但有些则保持不变。中子被短半衰期的核分裂产物吸收称为“反应堆中毒”;中子被长半衰期或稳定的核分裂产物吸收称为“反应器结渣”。一些在核分裂产生的分裂产物具有高中子吸收能力,如:135Xe(微观中子吸收截面σ=2,000,000 b)与149Sm(微观中子吸收截面σ=74,500 b)。因为这两个物质在反应器内大量吸收中子,进而影响热利用率与核反应度。尤其在反应器炉心的影响更为明显,严重的话会使连锁反应缺乏足够中子而停止。其中,135Xe在反应器中具有最显著的影响。当反应器要再重新启动时,由于分裂产物的衰变,使135Xe的累积增加(约在反应器关闭后10小时后达到最大值),会使反应器在一段时间内无法立即重启,这段期间被称作“死机时间(英语:reactor deadtime)”。在稳定运转期间,以恒定的中子通量来看,135Xe浓度达到长期平衡所需时间约40到50小时。当反应器功率增加时,因为燃烧度随着功率增加而上升,使得中子产生数目增加,135Xe浓度下降。因此,135Xe的浓度变化代表的是一种反应度的正向反馈,由其是在大型反应器中更显重要。因为95%的135Xe是来自于135I(半衰期约6到7小时)的衰变产物,所以135Xe的浓度会保持恒定,此时135Xe的浓度会维持在最低值。当反应器功率增加到较高功率时,135Xe浓度也会移动到新的平衡。反应器功率下降时则相反。因为149Sm并不具有放射性,所以不会被衰变消耗掉,它会产生与135Xe不大相同的问题。149Sm浓度会在反应器运转超过500小时(约3个礼拜)后达到平衡,之后在运转期间便不再变化,保持恒定。另一个中子毒物157Gd的微观中子吸收截面σ=200,000 b。有许多核分裂产物都会吸收中子对反应器造成一定影响。个别来看,它们不会有特别的影响,但累积在一起时则有显著的效应发生。这些物质被称为“团块核分裂产物”,在反应器中以每次分裂产生50靶恩的速率累积。核分裂产物毒物最终会使核燃料的使用效率下降,甚至导致核反应不稳定。在实务上,毒物累积会让核燃料的可用活期缩短,造成连锁反应减缓。这就是为什么燃料再处理十分重要的原因,使用过的核燃料中仍包含约97%的可裂变材料,经过化学的方法分离出来后,与新燃料混和即可再投入反应器中使用,可以节省成本,但有核扩散的疑虑。其他去除裂变产物方法,如:固态多孔燃料可以让气态的裂变产物散逸,或使用气态、液态的燃料(熔融盐反应器、可溶水匀相反应器)。这些方法可减轻毒物累积,但会造成安全移除与废料储存问题。其他具有高中子吸收截面的核分裂产物有:83Kr、95Mo、143Nd、147Pm。在这些元素的原子量以上,就算是偶数质量数,其放射性同位素仍有较大的吸收截面,允许核种连续地吸收不同能量的中子。较重的锕系元素在核分裂反应后,会有较多的分裂产物落在镧系元素的范围,所以其总中子吸收截面较高。在快反应器中,分裂产物毒物的情形较不一样,那是因为中子吸收截面在快中子与热中子之间并不相同。在铅铋共晶的铅冷式快反应堆中,吸收中子而裂变的分裂产物会较总分裂产物多出5%。如:在炉心中,133Cs、101Ru、103Rh、99Tc、105Pd和107Pd;在增殖层中,149Sm取代107Pd。除了中子毒物,在反应器中其他的材料也会吸收中子造成衰变,例如:3H吸收中子衰变为3He。原本氚的半衰期长达12.3年,衰变时间长,对反应器较没有显著影响。然而,当反应器停机几个月后,仍留在炉中的氚可能会吸收中子而衰变为氦-3,造成反应度的负面影响增强。任何在这段期间产生的氦-3,会被随后的中子—质子变换中反应掉。在运转中的反应器中,燃料会以单调函数递减。假如反应器已运转了很长一段时间,就必须更换燃料以达到临界质量。而额外燃料所超出的正反应度,必须与中子吸收材料产生的负反应度相抵消。含有中子吸收材料的可移动控制棒是控制反应的一种方法,但并不是所有反应器炉心都适用,要视其形状而定。可燃并非指在空气下可以燃烧,而是在核反应中可被消耗掉的意思。为了控制大量超出的燃料正反应度,在没有控制棒的情况下,可燃毒物会被装入炉心。可燃毒物是具有高中子吸收截面的物质,吸收中子后会衰变为低中子吸收截面的新物质。由于毒物的持续衰变,其负反应度影响会逐渐减弱。理想上,它的减弱速率会与燃料消耗速率一致。固定型可燃毒物通常会以硼或钆的化合物形式出现,被作成针状或盘状,甚至是直接添加在燃料内部。因为他们可以分布的较控制棒均匀,所以对功率的影响较小。固定型可燃毒物也可能被离散在炉心中的特定位置,用以控制中子通量,避免某些区块的通量或功率较大,但现多用固定型的不可燃毒物取代。不可燃毒物是一种在炉心周期内持续维持负反应度的物质。当然,并没有真正的不可燃毒物,但在某些条件下可视为不可燃,例如:铪。铪其中一种同位素在吸收中子后衰变为另一种中子吸收剂,并持续5个衰变反应都是类似的情形。这种反应产生的长半衰期可燃毒物即可视为不可燃毒物。可溶毒物在溶于冷却剂水后,会均匀分布在空间中。商用压水式反应堆中最常见的可溶毒物是硼酸。硼酸会降低热利用因子,使反应度下降。利用不同的硼酸浓度(析出或溶解),可以容易地调整反应度变化。假如浓度上升,冷却剂或减速剂会吸收更多中子,产生负反应度。反之则中子吸收下降,反应度上升。但这种浓度变化缓慢,主要是作为辅助方式使用。这种方法可以减少控制棒的使用,使中子通量维持在恒定状态。所有美制的压水式反应器都有使用这项系统,美国海军的反应器与沸水式反应堆则不使用。可溶毒物也被用于紧急停机安全系统中。在紧急停机时,操作员会直接注入含有可溶毒物的冷却剂于炉心内部。像是四硼酸钠和硝酸钆(Gd(NO3)3·xH2O)。2011年3月16日,韩国宣称应日本政府要求运送了53吨的硼酸前往日本,防止炉心熔毁发生。
相关
- 癌症治疗癌症免疫疗法(英语:cancer immunotherapy或immuno-oncology)是一类通过激活免疫系统来治疗癌症的方法。此类疗法采用了癌症免疫学(英语:Cancer immunology)研究的成果,这是肿瘤学中
- 巴特氏症候群2巴特氏症候群(Bartter syndrome)是一群肾小管病变的总称,它们的共同症状为低血钾、低血氯、代谢性碱中毒以及血中肾素浓度过高,但血压同时为正常。此症候群为肾小管上的数个离子
- 淋巴结淋巴结(lymph node)是淋巴系统的一部分(以往亦称做淋巴腺,但其并没有分泌物质的功能,故称为“腺”并不对),作用类似过滤器,内部蜂窝状的结构聚集了淋巴球,能够将病毒与细菌摧毁,当身体
- 肢肢,或称肢体,是指动物的手和脚。哺乳类动物拥有四条肢体,故又称为四肢。另一方面,手臂和腿也分别可称为上肢和下肢。昆虫的肢体则多很多,如毛虫、蜈蚣有很多附肢。
- 子囊孢子子囊孢子(英语:ascospore)是一种真菌的孢子,为子囊菌门真菌的有性孢子,在子囊中产生。典型的一个子囊中有八个子囊孢子,此八个孢子是在胞质融合与核聚变(英语:Karyogamy)发生后,经由一
- 双糖双糖(英语:Disaccharide,亦称为二糖)是由两个单糖分子经缩合反应除去一个水分子而成的一种碳水化合物。双糖和单糖一样可溶于水。常见的双糖为蔗糖、乳糖、麦芽糖。蔗糖是由葡萄
- 传播途径在医学、公共卫生、生物学、传染病学中,传播途径是指病原体从原宿主排出体外,经过一定的传播方式,到达并入侵新感染者的过程。这词特指微生物从一个个体传播到另一个个体并可以
- 后工业化后工业社会是社会科学名词,指涉开始自1960年代的工业社会转型出现的社会现象,该词最早出自法国社会学家阿兰·图赖讷,后由美国社会学家丹尼尔·贝尔的著作《后工业社会的来临》
- 实验经济学实验经济学(英语:Experimental economics)是一门利用真人实验测试不同经济理论及新市场机制的方法。利用受试者的金钱动机创造出类似真实世界的动机,帮助实验者及人们了解市场及
- 喉咙咽喉(Throat)是解剖学中咽(学名:Pharynx)和喉(Larynx)的总称,是消化系统和呼吸系统的一部分。Template:Mouth anatomy(英语:Template:Mouth anatomy)