首页 >
机器翻译
✍ dations ◷ 2025-01-22 20:59:44 #机器翻译
机器翻译(英语:Machine Translation,经常简写为MT,简称机译)属于计算语言学的范畴,其研究借由计算机程序将文字或演说从一种自然语言翻译成另一种自然语言。简单来说,机器翻译是通过将一个自然语言的字辞取代成另一个自然语言的字辞。借由使用语料库的技术,可达成更加复杂的自动翻译,包含可更佳的处理不同的文法结构、辞汇辨识、惯用语的对应等。目前的机器翻译软件通常可允许针对特定领域或是专业领域(例如天气预报)来加以客制化,目的在于将辞汇的取代缩小于该特定领域的专有名词上,以借此改进翻译的结果。这样的技术适合针对一些使用较正规或是较制式化陈述方式的领域。例如政府机关公文或是法律相关文件,这类型的文句通常比一般的文句更加正式与制式化,其机器翻译的结果通常比日常对话等非正式场合所使用语言的翻译结果更加符合语法。目前的翻译机器,有时可以得到可以理解的翻译结果,但是想要得到较有意义的翻译结果,往往需要在输入语句时适当地编辑,以利计算机程序分析。但是,机器翻译的结果好坏,往往取决于译入及译出语之间的词汇、文法结构、语系甚至文化上的差异,例如英语与荷兰语同为印欧语系日耳曼语族,这两种语言间的机器翻译结果通常比汉语与英语间机器翻译的结果好。因此,要改善机器翻译的结果,人为的介入仍显相当重要。一般而言,大众使用机器翻译的目的只是为了获知原文句子或段落的要旨,而不是精确的翻译。总的来说,机器翻译的效果并没有达到可以取代人工翻译的程度,所以无法成为正式的翻译。不过现在已有越来越多的公司尝试以机器翻译的技术来提供其公司网站多语系支援的服务。例如微软公司试将其 MSDN 以机器翻译来自动翻译成多国语言,如上文所说,知识库作为专业领域,其文法较为制式化,翻译结果亦更加符合自然语言。机器翻译的概念最早可追溯到17世纪。1629年,哲学家笛卡儿(René Descartes)提出了世界语言的概念,即将不同语言相同含义的词汇以统一符号表示。笛卡儿、莱布尼兹(Gottfried Wilhelm Leibniz)、贝克(Cave Beck)、基尔施(Athanasius Kircher)以及贝希尔(Johann Joachim Becher)等人曾试图编写类似世界语言的辞典。直到近代,借由机械的辅助,机器翻译的可行性大为提升。20世纪初期便有多位科学家与发明家陆续提出机器翻译的理论与实作计划或想法。沃伦·韦弗被誉为机器翻译的鼻祖。他抛却了俄语文本的含义,转而视为一堆“密码”。在美国和欧洲,他的团队和继任者在工作时都遵循着一个常理:“任何语言都是由一堆词汇和一套语法规则组成。只要把两种词汇放到机器里,按照人类组合这两种词汇的方式,为之建立一套完整的规则,机器就能破译“密码”。”1954年美国乔治城大学在一项实验中,成功将约60句的俄文自动翻译成英文,被视为机器翻译可行的开端。自此开始的十年间,政府与企业相继投入相当的资金,用于机器翻译的研究上。然而,ALPAC(自动语言处理顾问委员会,Automatic Language Processing Advisory Committee)在1966年提出的一项报告中表明十年来的机器翻译研究进度缓慢,未达预期。该项报告使得之后的研究资金大为减缩,直到近1980年代,由于电脑运算科技的进步,以及演算成本相对降低,才使政府与企业对机器翻译再次提起兴趣,特别是在统计法机器翻译的领域上。从人为的翻译来看机器翻译,翻译的过程可被细分如下:在这看似简单的步骤之后其实是复杂的认知操作。要能解译来源文字的完整意义,一个译者必须能够分析与诠释整段文章的所有特征,必须能够深度的了解其文法、语义、语法、成语等等,相当于了解来源语言的文化背景。译者同时也必须兼备目标语言相同深度的知识。于是,这对机器翻译便是一项挑战,即:要如何设计一个程式使其能够如同真人一样的“了解(认知)”一段文字,并且能够“创造”一段好似真人实际写作出来的目标语言的文字。机器翻译可以使用一种基于语言规则的语法,文字将会依语言学的方式来进行翻译,即一个最合适的目标语言的字词将会被用来取代来源语言的字词。能够优先解决对自然语言的正确认知与辨识,被视为机器翻译是否能够成功的最主要关键。一般而言,用规则法(rule-based method)分析一段文字,通常会先建立目标语言中介的、象征性的表义字词。再根据这中介的表义字词来决定使用人工国际语言(interlingual)化的机器翻译,或是使用转化原则法的机器翻译(transfer-based machine translation)。这些方法都必须拥有具备足够形态学的、语句学的、以及语义学的资讯以及大量的字词规则所建构的辞汇。常见机器翻译的难处在于无法给于适当且足够庞大的资讯,来满足不同领域或是不同法则的机器翻译法。举例来说,对于一个需要统计学法则的翻译法,给予它大量的多语言素材是必要的,但对于文法式法则的翻译法便显得没有太大意义。规则法机器翻译的范例包含了转化法(transfer-based)、中间语法(interlingual)、以及辞典法(dictionary-based)机器翻译
。机器翻译可利用辞典的词汇作翻译。因为这种翻译是“字对字”的,所以通常各字之间在意思上都没有任何关联。这种机器翻译法最适用于具有冗长的词语列表(意即非完整的句子)。例如产品型录的翻译。所谓范例法,即基于实例的翻译方法。基本思路是电脑模拟大量翻译实例(翻译语料库),进行有效替换的翻译策略。因此该方法依赖于翻译语料库的质量、规模和覆盖面。如果有完全一样的例句,则直接采用范例的译文;如果有多个相似的例句,则自动模拟相似度最高的译文,只需翻译不同部分即可;如果没有相似的译文,则必须进行基于统计或规则的方法进行翻译。根据乔姆斯基的转换生成语法而言,这种方法永远也无法赶上人的语言的变化。因此,这种方法算是比较笨的方法,类似于字典,我们可以从中查到有用的字词,甚至短语,但写出什么东西,却是字典无法实现的。因此这种方法有一定的实用性,但局限性也显而易见。统计机器翻译:是目前非限定领域机器翻译中,性能较佳的一种方法。统计机器翻译的基本思想是通过对大量的平行语料进行统计分析,构建统计翻译模型,进而使用此模型进行翻译。从早期基于词的机器翻译已经过渡到基于短语的翻译,并正在融合句法信息,以进一步提高翻译的精确性。统计机器翻译的首要任务是为语言的产生构造某种合理的统计模型,并在此统计模型基础上,定义要估计的模型参数,并设计参数估计算法。早期的基于词的统计机器翻译采用的是噪声信道模型,采用最大似然准则进行无监督训练,而近年来常用的基于短语的统计机器翻译则采用区分性训练方法,一般来说需要参考语料进行有监督训练。贝氏模型(Bayesian Model)也是一种机器翻译方法。近年来在语言服务产业掀起波澜的神经机器翻译就是利用巨大的人工神经网络计算一连串字词的几率以产生文意精确的翻译。将在未来数年持续改变翻译及语言在地化产业。在投入大量翻译资料集(data sets)以训练人工智能和机器学习模组后,神经机器翻译的品质已大幅改善。更重要的是,当神经机器翻译与人工编修搭配,无论在技术还是文化层面,更能达到ㄧ流的译文品质。因此,神经翻译与人工编修搭配需求庞大。
相关
- 鼻病毒人类鼻病毒A (Human rhinovirus A) 人类鼻病毒B (Human rhinovirus B) 人类鼻病毒C (Human rhinovirus C)鼻病毒(学名:rhinovirus,rhino-是希腊文“鼻”的意思)是最常造成一般感
- 疾病疾病是生物在一定原因的损害性作用下,因自稳调节紊乱而发生的异常生命活动过程,是特定的异常病理情形,而且会影响生物体的部分或是所有器官。一般会解释为“身体病况”(medical
- 传染病感染是指由病原体物种在身为宿主的个体内进行有害的复制、繁殖过程。具传染性的生物体会寻找并且利用宿主体内资源,以利自身生存,但这个过程一旦干扰了宿主正常的生理运作,可能
- 肺动脉高血压肺高压又称肺动脉高压(Pulmonary hypertension,简称PH或PHTN),是描述肺循环内的压力升高的情形。肺高压会造成呼吸困难、晕眩、昏厥、下肢水肿,肺高压患者会因为心脏负荷增加令运
- 词在语言学中,词(英语:word),又称为单词,是能独立运用并含有语义内容或语用内容(即具有表面含义或实际含义)的最小单位。词的集合称为词汇,例如:所有中文词统称为“中文词汇”等。词典是
- 毒理学毒理学(toxicology, /ˌtɒksᵻˈkɒlədʒi/)是研究外源性化学物及物理和生物因素对生物有机体的有害作用及其作用机理,进而预测其对人体和生态环境的危害的严重程度,为确定安
- 芽单胞菌门芽单胞菌门(Gemmatimonadetes)目前仅有一属得到正式命名,即芽单胞菌属(Gemmatimonas),是一类革兰氏阴性细菌,通过出芽方式繁殖。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1
- 酒酒(英语:Alcoholic beverage),其中含有0.5%至96%的酒精(即乙醇)。为人类饮用历史最长的加工饮品之一,由植物发酵制成。相传灵长类动物有着储存果实的习惯,有时会因自然发酵意外酿成
- 载体在流行病学中,载体又称为病媒,是指疾病携带者和传播者,但其本身不受影响。如疟蚊是疟疾的载体,它在吸血的过程中可以将导致疟疾的疟原虫传入人体内,但疟原虫对于疟蚊本身却不带来
- 激素激素(英语:hormone)也音译作荷尔蒙或贺尔蒙,在希腊文原意为“兴奋活动”。激素是指体内的某一细胞、腺体或者器官所产生的可以影响机体内其他细胞活动的化学物质。仅需很小剂量