连续性方程

✍ dations ◷ 2025-08-02 01:34:57 #连续性方程
在物理学里,连续性方程(英语:continuity equation)乃是描述守恒量传输行为的偏微分方程。由于在各自适当条件下,质量、能量、动量、电荷等等,都是守恒量,很多种传输行为都可以用连续性方程来描述。连续性方程乃是局域性的守恒定律方程。与全域性的守恒定律相比,这种守恒定律比较强版。在本条目内的所有关于连续性方程的范例都表达同样的点子──在任意区域内某种守恒量总量的改变,等于从边界进入或离去的数量;守恒量不能够增加或减少,只能够从某一个位置迁移到另外一个位置。每一种连续性方程都可以以积分形式表达(使用通量积分),描述任意有限区域内的守恒量;也可以以微分形式表达(使用散度算符),描述任意位置的守恒量。应用散度定理,可以从微分形式推导出积分形式,反之亦然。一般的连续性方程,其微分形式为其中, φ {displaystyle varphi } 是某物理量 q {displaystyle q} 的密度(物理量每单位体积), f {displaystyle mathbf {f} } 是 q {displaystyle q} 的流量密度(物理量每单位面积每单位时间)的矢量函数(vector function), s {displaystyle s} 是 q {displaystyle q} 的生成量每单位体积每单位时间。假若 s > 0 {displaystyle s>0} 则称 s {displaystyle s} 为“源点”;假若 s < 0 {displaystyle s<0} 则称 s {displaystyle s} 为“汇点”。假设 φ {displaystyle varphi } 是守恒量,不能够生成或湮灭(例如,电荷),则 s = 0 {displaystyle s=0} ,连续性方程变为从简单的“能量连续性方程”到复杂的纳维-斯托克斯方程,这方程可以用来表示任意连续性方程。这方程也是平流方程(advection equation)的推广。其它物理学里的方程,像电场的高斯定律或高斯重力定律(Gauss' law for gravity),都具有类似连续性方程的数学形式,但是通常不会称为连续性方程,因为 f {displaystyle mathbf {f} } 并不代表真实物理量的流动。根据散度定理,连续性方程可以写为等价的积分形式:其中, S {displaystyle mathbb {S} } 是包住体积 V {displaystyle mathbb {V} } 的任意固定(不随时间改变)闭曲面, Q {displaystyle Q} 是在体积 V {displaystyle mathbb {V} } 内的 q {displaystyle q} 总量, S = ∫ V s   d 3 r {displaystyle S=int _{mathbb {V} }s mathrm {d} ^{3}r} 是在积分体积 V {displaystyle mathbb {V} } 内源点与汇点的总生成量每单位时间, d a {displaystyle mathrm {d} mathbf {a} } 是微小面矢量积分元素。举一简例,假设 V {displaystyle mathbb {V} } 是台北101大楼, Q {displaystyle Q} 是在大楼内某时间的总人数, S {displaystyle mathbb {S} } 是由门口、墙壁、屋顶、地基等等,共同组成的曲面,则连续性方程表明,当人们进入大楼时(代表穿过曲面的内向通量),或当大楼里面的孕妇生产时(代表源点的 s > 0 {displaystyle s>0} ),在大楼里面的总人数会增加;而当人们离开大楼时(代表穿过曲面的外向通量),在大楼里面的总人数会减少。在电磁理论里,连续性方程可以视为一条经验定律,表达局域电荷守恒,或是从麦克斯韦方程组推导出的结果。“电荷连续性方程”表明,电荷密度 ρ {displaystyle rho } 的变率与电流密度 J {displaystyle mathbf {J} } 的散度,两者的代数和等于零:麦克斯韦-安培方程为其中, B {displaystyle mathbf {B} } 是磁场, E {displaystyle mathbf {E} } 是电场, μ 0 {displaystyle mu _{0}} 是磁常数, ϵ 0 {displaystyle epsilon _{0}} 是电常数。取散度于方程的两边,由于旋度的散度必是零,高斯定律的方程为将这方程代入,可以得到电流是电荷的流量。连续性方程可以这样论述:假若电荷从某微小体积元素移动出去(电流密度的散度是正值),则在那微小体积元素内的总电荷量会减少,电荷密度的变率是负值。从这解释可以察觉,连续性方程就是电荷守恒。四维电流密度定义为其中, α {displaystyle alpha } 标记哪一个时空坐标, c {displaystyle c} 是光速。电荷守恒可以简洁地表达为四维电流密度的散度,即连续性方程其中, ∂ α   = d e f   ( ∂ ∂ r 0 , ∂ ∂ r 1 , ∂ ∂ r 2 , ∂ ∂ r 3 ) = ( ∂ c ∂ t , ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) {displaystyle partial _{alpha } {stackrel {def}{=}} left({frac {partial }{partial r^{0}}},{frac {partial }{partial r^{1}}},{frac {partial }{partial r^{2}}},{frac {partial }{partial r^{3}}}right)=left({frac {partial }{cpartial t}},{frac {partial }{partial x}},{frac {partial }{partial y}},{frac {partial }{partial z}}right)} 。在流体力学里,连续性方程表明,在任何稳定态过程中,质量进入物理系统的速率等于离开的速率。。连续性方程类比于电路学的基尔霍夫电流定律。“质量连续性方程”的微分形式为其中, ρ {displaystyle rho } 是流体质量密度, u {displaystyle mathbf {u} } 是流速矢量场,两者相乘后为质量通量。假设流体是不可压缩流,则密度 ρ {displaystyle rho } 是常数,质量连续性方程简化为体积连续性方程:这意味着,在所有位置,速度场的散度等于零;也就是说,局域的体积变率为零。在另一方面,纳维-斯托克斯方程是一个矢量连续性方程,描述动量守恒。根据能量守恒,能量只能够传输,不能够生成或湮灭,这导致“能量连续性方程”。这是在热力学定律(Laws of thermodynamics)外,又一种关于能量守恒的数学论述。以方程表达,其中, u {displaystyle u} 是能量密度(能量每单位体积), q {displaystyle q} 是能量通量矢量(数值大小为传输的能量每单位截面面积每单位时间,方向为截面的法向方向)。根据傅里叶定律(Fourier's law),对于均匀传导介质,其中, k {displaystyle k} 是热导率, T {displaystyle T} 是温度函数。能量连续性方程又可写为在量子力学里,从概率守恒可以得到“概率连续性方程”。设定一个量子系统的波函数为 Ψ ( x , t ) {displaystyle Psi (x,t)} 。定义概率流 J {displaystyle mathbf {J} } 为其中, ℏ {displaystyle hbar } 是约化普朗克常数, m {displaystyle m} 是质量, Ψ ∗ {displaystyle Psi ^{*}} 是 Ψ {displaystyle Psi } 是共轭复数, Im ( ) {displaystyle {mbox{Im}}()} 是取括弧内项目的复值。概率流满足量子力学的连续方程:其中, ρ = | Ψ | 2 {displaystyle rho =|Psi |^{2}} 是概率密度。应用高斯公式,等价地以积分方程表示,其中, V {displaystyle mathbb {V} } 是任意三维区域, S {displaystyle mathbb {S} } 是 V {displaystyle mathbb {V} } 的边界曲面。这就是量子力学概率守恒定律的方程。方程 (1) 左边第一个体积积分项目(不包括对于时间的偏微分),即是测量粒子位置时,粒子在 V {displaystyle mathbb {V} } 内的概率。第二个曲面积分是概率流出 V {displaystyle mathbb {V} } 的通量。总之,方程 (1) 表明,粒子在三维区域 V {displaystyle mathbb {V} } 内的概率对于时间的微分,加上概率流出三维区域 V {displaystyle mathbb {V} } 的通量,两者的总和等于零。测量粒子在三维区域 V {displaystyle mathbb {V} } 内的概率 P {displaystyle P} 是概率对于时间的导数是假设 Ψ {displaystyle Psi } 的含时薛定谔方程为其中, U ( r ) {displaystyle U(mathbf {r} )} 是位势。将含时薛定谔方程代入方程 (2) ,可以得到应用一则矢量恒等式,可以得到这方程右手边第一个项目与第三个项目互相抵销,将抵销后的方程代入,将概率密度方程与概率流定义式代入,这相等式对于任意三维区域 V {displaystyle mathbb {V} } 都成立,所以,被积项目在任何位置都必须等于零:

相关

  • 甲状腺炎甲状腺炎(Thyroiditis)是发生在甲状腺的炎症,包括甲状腺功能亢进症或甲状腺机能低下症,是内分泌学疾病的一种。 甲状腺位于颈部的前方、喉结以下,负责生产控制生陈代谢的荷尔蒙。
  • 仪器分析仪器分析法, 相对于化学分析法或其它, 仪器分析是用仪器的物理学方法, 测量物质的物理和化学性质的参数, 并实验其变化, 以此判断其化学成分, 元素含量, 甚至化学结构等。
  • Rush PoppersRush Poppers,又可简称芳香剂、Rush或Poppers,是各种亚硝酸酯——特别是异丙基亚硝酸盐(2-propyl nitrite)、异亚硝酸盐(2-methylpropyl nitrite)以及较为罕见的亚硝酸丁酯(isoamyl
  • 彳部,为汉字索引里为部首之一,康熙字典214个部首中的第六十个(三划的则为第三十一个)。就中文而言,彳部归于三划部首。彳部通常是从左方为部字。且无其他部首可用者将部首归为彳
  • 奢侈品奢侈品是在市场上无论是质量,还是消费价格都是最高档次的商品或服务。不同的市场也有各自不同的奢华区间,譬如豪宅、地皮、酒店、珠宝、钟表、眼镜、饰物、 服装、工艺、古董
  • 约翰约翰(英文:John,1166年12月24日-1216年10月19日),英格兰国王,由1199年到1216年在位。亨利二世第五子,母亲为阿基坦的埃莉诺,而幼王亨利、狮心王理查、布列塔尼公爵若弗鲁瓦二世则是约
  • 国家纳米科学中心国家纳米科学中心成立于2003年,由中国科学院和教育部联合共建,是具有独立事业单位法人资格的综合性科研机构,从事纳米科技的基础研究和应用基础研究,目标是建设成为面向国内外开
  • 异裂异裂(heterolysis)是化学上化学键断裂时,两个成键电子分配到其中一个成键原子上,从而产生一个正离子和一个负离子的过程。最常见的是,电负性较强的原子使电子对保持阴离子,而正电
  • 最高点各国最高点列表罗列各主权国家和境外领土在海平面以上的最高点。以下包括国际标准化组织的ISO 3166-1国际标准所列地区。
  • 瓦斯瓦斯可以指:荷兰语“gas”(意为“气体”)的音译,可以指: