德拜-沃勒因子

✍ dations ◷ 2025-09-08 05:46:58 #凝聚体物理学,晶体学,散射,衍射

德拜-沃勒因子(Debye–Waller factor,DWF),得名于彼得·德拜和伊瓦尔·沃勒(英语:Ivar Waller),在凝聚态物理学中描述的是X射线衍射中由热运动引起的衰减(英语:Attenuation);又被称作B因子或者温度因子。兰姆-穆斯堡尔因子(英语:Lamb-Mössbauer factor)是德拜-沃勒因子在相干中子散射实验(英语:neutron scattering)和穆斯堡尔谱学中的一个推广。

在散射实验中,对于散射矢量 q {\displaystyle \mathbf {q} } DWF ( q ) {\displaystyle {\text{DWF}}(\mathbf {q} )} 给出的是弹性散射(英语:elastic scattering)的比例; 1 DWF ( q ) {\displaystyle 1-{\text{DWF}}(\mathbf {q} )} 则是非弹性散射的比例。(严格来讲,这种概率诠释不是非常准确。)布拉格衍射实验中,弹性散射是出现布拉格峰的原因;而非弹性散射产生的是宽广的背景噪声,除非分析对象是散射粒子的能量(例如非弹性中子散射(英语:inelastic neutron scattering)或是电子能量损失谱),否则均被视为干扰。因此在一般的衍射实验中,只有弹性散射是有效信息。这也使得德拜-沃勒因子的计算在衍射实验中具有重要的意义。

在劳厄完成X射线衍射实验之前,学术界曾经对此实验的可行性进行过讨论。其中一种观点认为,在室温条件下,晶格中的原子由于热运动,是无法维持其在晶格中周期性排列的位置的,因此在实际的实验中不应该观测到任何的衍射峰(即布拉格峰)。

然而,随后劳厄和布拉格等人的X射线衍射实验证实了布拉格峰的存在。实验中,当晶体的温度上升时,布拉格峰的强度下降,但其宽度不变。 以下是德拜的描述:

对此实验现象,德拜给出了最初的理论解释。给结构因子 S ( q ) {\displaystyle S(\mathbf {q} )} 中表示原子位置的项 R j {\displaystyle \mathbf {R} _{j}} 加上关于时间的微扰项 u ( t ) {\displaystyle \mathbf {u} (t)} ,得到修正后的原子位置为 R ( t ) = R j + u ( t ) {\displaystyle \mathbf {R} (t)=\mathbf {R} _{j}+\mathbf {u} (t)} 。假设每个原子都相对各自的平衡位置独立地振动,则对修正后结构因子中的 f j exp ( i q R j ) {\displaystyle f_{j}\exp(-i\mathbf {q} \cdot \mathbf {R} _{j})} 一项变为:

修正项 exp ( i q u ) {\displaystyle \left\langle \exp \left(-i\mathbf {q} \cdot \mathbf {u} \right)\right\rangle } 即为德拜-沃勒因子的最初来源。

德拜-沃勒因子的基本表达式为:

其中的 u {\displaystyle \mathbf {u} } 为热振动引起的位移, . . . {\displaystyle \left\langle ...\right\rangle } 表示热力学平均。

exp ( i q u ) {\displaystyle \left\langle \exp \left(-i\mathbf {q} \cdot \mathbf {u} \right)\right\rangle } 可被展开为

假设 u {\displaystyle \mathbf {u} } 在空间上具有各向同性,即 q u = 0 {\displaystyle \left\langle \mathbf {q} \cdot \mathbf {u} \right\rangle =0} ,则

注意到上式的前两项与 exp ( 1 2 ( q u ) 2 ) {\displaystyle \exp(-{\frac {1}{2}}\left\langle (\mathbf {q} \cdot \mathbf {u} )^{2}\right\rangle )} 展开式的前两项是一致的。因此可用 exp ( 1 2 ( q u ) 2 ) {\displaystyle \exp(-{\frac {1}{2}}\left\langle (\mathbf {q} \cdot \mathbf {u} )^{2}\right\rangle )} 代换 exp ( i q u ) {\displaystyle \left\langle \exp \left(-i\mathbf {q} \cdot \mathbf {u} \right)\right\rangle } ,代入开头的基本表达式:

DWF = exp ( ( q u ) 2 ) {\displaystyle {\text{DWF}}=\exp(-\left\langle (\mathbf {q} \cdot \mathbf {u} )^{2}\right\rangle )}

上式即为德拜-沃勒因子在教科书中常见的定义。值得注意的是上述推导都是在经典物理学的框架之下完成的;而在量子力学中,相同的结论依然成立。

进一步的推导可得

其中 q {\displaystyle q} u {\displaystyle u} 为矢量 q {\displaystyle \mathbf {q} } u {\displaystyle \mathbf {u} } 的大小。 u 2 {\displaystyle \langle u^{2}\rangle } 叫做均方位移(英语:mean squared displacement)。若入射波的波长为 λ {\displaystyle \lambda } ,且被弹性散射了 2 θ {\displaystyle 2\theta } 角度,可用下式计算出 q {\displaystyle q} 的大小:

在对蛋白质结构的研究中,“B因子(B-factor)”这个名称更为常用,其定义为

单位为 Å2。B因子可被看作是结构中不同部分的相对振动。低B因子的原子从属于结构中良好有序(well ordered)的部分,而高B因子的原子一般属于结构中非常柔性易变(flexible)的部分。蛋白质资料库中的每一ATOM记录(PDB文件格式(英语:Protein Data Bank (file format)))都会包含某特定原子的B因子信息。

相关

  • 霍尔斯特古斯塔夫·西奥多·霍尔斯特(英语:Gustav Theodore Holst,1874年9月21日-1934年5月25日),英国作曲家。原名为Gustav(Theodore)von Holst,在第一次世界大战后去掉了名字中的von。出生
  • 大连港坐标:38°55′N 121°41′E / 38.917°N 121.683°E / 38.917; 121.683大连港是中国大连的港口,建于清末1898年,是一个天然的不冻港,亦是中国南北水陆交通运输枢纽和重要国际贸
  • 李成梁李成梁(1526年-1615年),字汝契,号引城,铁岭(今辽宁铁岭)人, 明朝后期将领,朝鲜人李英后裔。李颇有将才。镇守辽东30年期间组织辽东铁骑,先后十次奏大捷。但因位望益隆,贵极而骄,奢侈无度,
  • 巴黎和会巴黎和会可能指:
  • 科罗拉多斯普林斯科罗拉多斯普林斯(英语:Colorado Springs)是美国科罗拉多州的第二大、美国第49大城市,也是艾尔帕索县的首府。根据美国人口普查局2005年的估计,科罗拉多斯普林斯市约有人口36万98
  • 当归属约50种当归属(学名:)是伞形科下的一个属的草本植物,主要分布在北半球的温带及亚寒带地区。其特征为1至3米高,拥有羽状叶片,并有白色或浅绿色的花朵。它的成员包括白芷、当归、东当
  • 美仕唐纳滋美仕唐纳滋(英語:Mister Donut)为起源于美国之甜甜圈连锁店之一,由1956年正式成立至今。美仕唐纳滋于1956年由哈里·威诺克(Harry Winokur)创立,之后并成为他的姐夫威廉·罗森伯格(W
  • 垃圾合唱团垃圾合唱团(英语:Garbage)于1994年成立于美国威斯康辛州,由制作人Butch Vig领军,伙同Duke Erikson、Steve Marker,再加上一头招牌红发的名模女主唱Shirley Manson,成为一支知名度与
  • 晶洞晶洞,或称晶球,是一种在美国、巴西和墨西哥比较常见的地质构成,其实质上是岩石内部的气泡晶体构成,一般内部含有石英晶体和/或玉髓沉积,晶球的外部为石灰石或相关岩石。其他完全由
  • 三异丁基铝三异丁基铝(化学式:C12H27Al)是无色透明液体,用作顺丁橡胶聚合催化剂,也是其他定向聚合橡胶、合成树脂和合成纤维常用聚合催化剂。