德拜-沃勒因子

✍ dations ◷ 2025-04-02 11:43:49 #凝聚体物理学,晶体学,散射,衍射

德拜-沃勒因子(Debye–Waller factor,DWF),得名于彼得·德拜和伊瓦尔·沃勒(英语:Ivar Waller),在凝聚态物理学中描述的是X射线衍射中由热运动引起的衰减(英语:Attenuation);又被称作B因子或者温度因子。兰姆-穆斯堡尔因子(英语:Lamb-Mössbauer factor)是德拜-沃勒因子在相干中子散射实验(英语:neutron scattering)和穆斯堡尔谱学中的一个推广。

在散射实验中,对于散射矢量 q {\displaystyle \mathbf {q} } DWF ( q ) {\displaystyle {\text{DWF}}(\mathbf {q} )} 给出的是弹性散射(英语:elastic scattering)的比例; 1 DWF ( q ) {\displaystyle 1-{\text{DWF}}(\mathbf {q} )} 则是非弹性散射的比例。(严格来讲,这种概率诠释不是非常准确。)布拉格衍射实验中,弹性散射是出现布拉格峰的原因;而非弹性散射产生的是宽广的背景噪声,除非分析对象是散射粒子的能量(例如非弹性中子散射(英语:inelastic neutron scattering)或是电子能量损失谱),否则均被视为干扰。因此在一般的衍射实验中,只有弹性散射是有效信息。这也使得德拜-沃勒因子的计算在衍射实验中具有重要的意义。

在劳厄完成X射线衍射实验之前,学术界曾经对此实验的可行性进行过讨论。其中一种观点认为,在室温条件下,晶格中的原子由于热运动,是无法维持其在晶格中周期性排列的位置的,因此在实际的实验中不应该观测到任何的衍射峰(即布拉格峰)。

然而,随后劳厄和布拉格等人的X射线衍射实验证实了布拉格峰的存在。实验中,当晶体的温度上升时,布拉格峰的强度下降,但其宽度不变。 以下是德拜的描述:

对此实验现象,德拜给出了最初的理论解释。给结构因子 S ( q ) {\displaystyle S(\mathbf {q} )} 中表示原子位置的项 R j {\displaystyle \mathbf {R} _{j}} 加上关于时间的微扰项 u ( t ) {\displaystyle \mathbf {u} (t)} ,得到修正后的原子位置为 R ( t ) = R j + u ( t ) {\displaystyle \mathbf {R} (t)=\mathbf {R} _{j}+\mathbf {u} (t)} 。假设每个原子都相对各自的平衡位置独立地振动,则对修正后结构因子中的 f j exp ( i q R j ) {\displaystyle f_{j}\exp(-i\mathbf {q} \cdot \mathbf {R} _{j})} 一项变为:

修正项 exp ( i q u ) {\displaystyle \left\langle \exp \left(-i\mathbf {q} \cdot \mathbf {u} \right)\right\rangle } 即为德拜-沃勒因子的最初来源。

德拜-沃勒因子的基本表达式为:

其中的 u {\displaystyle \mathbf {u} } 为热振动引起的位移, . . . {\displaystyle \left\langle ...\right\rangle } 表示热力学平均。

exp ( i q u ) {\displaystyle \left\langle \exp \left(-i\mathbf {q} \cdot \mathbf {u} \right)\right\rangle } 可被展开为

假设 u {\displaystyle \mathbf {u} } 在空间上具有各向同性,即 q u = 0 {\displaystyle \left\langle \mathbf {q} \cdot \mathbf {u} \right\rangle =0} ,则

注意到上式的前两项与 exp ( 1 2 ( q u ) 2 ) {\displaystyle \exp(-{\frac {1}{2}}\left\langle (\mathbf {q} \cdot \mathbf {u} )^{2}\right\rangle )} 展开式的前两项是一致的。因此可用 exp ( 1 2 ( q u ) 2 ) {\displaystyle \exp(-{\frac {1}{2}}\left\langle (\mathbf {q} \cdot \mathbf {u} )^{2}\right\rangle )} 代换 exp ( i q u ) {\displaystyle \left\langle \exp \left(-i\mathbf {q} \cdot \mathbf {u} \right)\right\rangle } ,代入开头的基本表达式:

DWF = exp ( ( q u ) 2 ) {\displaystyle {\text{DWF}}=\exp(-\left\langle (\mathbf {q} \cdot \mathbf {u} )^{2}\right\rangle )}

上式即为德拜-沃勒因子在教科书中常见的定义。值得注意的是上述推导都是在经典物理学的框架之下完成的;而在量子力学中,相同的结论依然成立。

进一步的推导可得

其中 q {\displaystyle q} u {\displaystyle u} 为矢量 q {\displaystyle \mathbf {q} } u {\displaystyle \mathbf {u} } 的大小。 u 2 {\displaystyle \langle u^{2}\rangle } 叫做均方位移(英语:mean squared displacement)。若入射波的波长为 λ {\displaystyle \lambda } ,且被弹性散射了 2 θ {\displaystyle 2\theta } 角度,可用下式计算出 q {\displaystyle q} 的大小:

在对蛋白质结构的研究中,“B因子(B-factor)”这个名称更为常用,其定义为

单位为 Å2。B因子可被看作是结构中不同部分的相对振动。低B因子的原子从属于结构中良好有序(well ordered)的部分,而高B因子的原子一般属于结构中非常柔性易变(flexible)的部分。蛋白质资料库中的每一ATOM记录(PDB文件格式(英语:Protein Data Bank (file format)))都会包含某特定原子的B因子信息。

相关

  • 吉特曼氏综合症吉特曼氏综合症(英语:Gitelman syndrome),又称吉特曼症候群 ,是一种常染色体隐性肾脏疾病,其特点是低钙(hypocalciuria)、及低镁(hypomagnesemia)之低钾代谢性碱中毒(Metabolic alkalos
  • 广群芳谱《广群芳谱》,清康熙四十七年命内阁学士汪灏等撰成,凡100卷。《广群芳谱》由明人王象晋《群芳谱》增删而成,《广群芳谱》分天时谱、榖谱、桑麻谱、蔬谱、茶谱、竹谱、花谱、果
  • QQ空间QQ空间(英语:Qzone)是腾讯计算机通讯公司(港交所:0700)于2005年推出的一个微部落格系统,目前活跃于中国大陆。其推出的另一个微部落格系统TM空间(I-zone)目前已与QQ空间合并。QQ空间
  • 高孔廉高孔廉(1944年11月9日-),福建林森县人。中华民国政治人物。前任台湾海基会副董事长兼秘书长。妻罗惠珠,育有二子;现任中原大学兼任讲座教授。2015年2月11日高孔廉出任国民党主席特
  • 医方类聚《医方聚类》是朝鲜世宗命金礼蒙等人编撰的一部大型医学著作:16,与《乡药集成方》、《东医宝鉴》合称为朝鲜医学史三大古典著作:15:208。该书历经朝鲜世宗、世祖、成宗三朝,用
  • 粟米蛇玉米蛇(学名:Pantherophis guttatus)又称作红鼠蛇以及玉米锦蛇,是一种原产于北美洲的食鼠蛇,由于它腹部的斑点状花纹看起来像玉米而得名“玉米蛇”。它们经常在玉米粮仓出没,都是
  • 马来亚联邦马来亚联邦(英语:Malayan Union,1946年—1948年)是第二次世界大战之后,英国殖民政府为整合英属马来亚,而在马来半岛所策划的联邦体制,属英国皇家殖民地,由第一任总督爱德华·占德(英
  • 方城县方城县在中国河南省西南部、唐河上游,是南阳市下辖的一个县;面积2542平方公里,人口约100万。秦置阳城县;汉改称堵阳县;北魏始设方城县;金置裕州,领方城、舞阳、叶三县;明废方城入州;
  • 曼·雷曼·雷(原名伊曼纽尔·拉德尼茨基,生于1890年8月27日,卒于1976年11月18日)是一位美国现代主义艺术家,在法国巴黎度过了自己大部分职业生涯。他为达达主义运动和超现实主义运动作
  • 追良濑站追良濑站(日语:追良瀬駅/おいらせえき  */?)位于青森县西津轻郡深浦町大字追良濑字盐见崎,是东日本旅客铁道(JR东日本)管辖的五能线上的铁路车站。侧式站台1台1线的地上车站。之