德拜-沃勒因子

✍ dations ◷ 2025-05-18 03:52:23 #凝聚体物理学,晶体学,散射,衍射

德拜-沃勒因子(Debye–Waller factor,DWF),得名于彼得·德拜和伊瓦尔·沃勒(英语:Ivar Waller),在凝聚态物理学中描述的是X射线衍射中由热运动引起的衰减(英语:Attenuation);又被称作B因子或者温度因子。兰姆-穆斯堡尔因子(英语:Lamb-Mössbauer factor)是德拜-沃勒因子在相干中子散射实验(英语:neutron scattering)和穆斯堡尔谱学中的一个推广。

在散射实验中,对于散射矢量 q {\displaystyle \mathbf {q} } DWF ( q ) {\displaystyle {\text{DWF}}(\mathbf {q} )} 给出的是弹性散射(英语:elastic scattering)的比例; 1 DWF ( q ) {\displaystyle 1-{\text{DWF}}(\mathbf {q} )} 则是非弹性散射的比例。(严格来讲,这种概率诠释不是非常准确。)布拉格衍射实验中,弹性散射是出现布拉格峰的原因;而非弹性散射产生的是宽广的背景噪声,除非分析对象是散射粒子的能量(例如非弹性中子散射(英语:inelastic neutron scattering)或是电子能量损失谱),否则均被视为干扰。因此在一般的衍射实验中,只有弹性散射是有效信息。这也使得德拜-沃勒因子的计算在衍射实验中具有重要的意义。

在劳厄完成X射线衍射实验之前,学术界曾经对此实验的可行性进行过讨论。其中一种观点认为,在室温条件下,晶格中的原子由于热运动,是无法维持其在晶格中周期性排列的位置的,因此在实际的实验中不应该观测到任何的衍射峰(即布拉格峰)。

然而,随后劳厄和布拉格等人的X射线衍射实验证实了布拉格峰的存在。实验中,当晶体的温度上升时,布拉格峰的强度下降,但其宽度不变。 以下是德拜的描述:

对此实验现象,德拜给出了最初的理论解释。给结构因子 S ( q ) {\displaystyle S(\mathbf {q} )} 中表示原子位置的项 R j {\displaystyle \mathbf {R} _{j}} 加上关于时间的微扰项 u ( t ) {\displaystyle \mathbf {u} (t)} ,得到修正后的原子位置为 R ( t ) = R j + u ( t ) {\displaystyle \mathbf {R} (t)=\mathbf {R} _{j}+\mathbf {u} (t)} 。假设每个原子都相对各自的平衡位置独立地振动,则对修正后结构因子中的 f j exp ( i q R j ) {\displaystyle f_{j}\exp(-i\mathbf {q} \cdot \mathbf {R} _{j})} 一项变为:

修正项 exp ( i q u ) {\displaystyle \left\langle \exp \left(-i\mathbf {q} \cdot \mathbf {u} \right)\right\rangle } 即为德拜-沃勒因子的最初来源。

德拜-沃勒因子的基本表达式为:

其中的 u {\displaystyle \mathbf {u} } 为热振动引起的位移, . . . {\displaystyle \left\langle ...\right\rangle } 表示热力学平均。

exp ( i q u ) {\displaystyle \left\langle \exp \left(-i\mathbf {q} \cdot \mathbf {u} \right)\right\rangle } 可被展开为

假设 u {\displaystyle \mathbf {u} } 在空间上具有各向同性,即 q u = 0 {\displaystyle \left\langle \mathbf {q} \cdot \mathbf {u} \right\rangle =0} ,则

注意到上式的前两项与 exp ( 1 2 ( q u ) 2 ) {\displaystyle \exp(-{\frac {1}{2}}\left\langle (\mathbf {q} \cdot \mathbf {u} )^{2}\right\rangle )} 展开式的前两项是一致的。因此可用 exp ( 1 2 ( q u ) 2 ) {\displaystyle \exp(-{\frac {1}{2}}\left\langle (\mathbf {q} \cdot \mathbf {u} )^{2}\right\rangle )} 代换 exp ( i q u ) {\displaystyle \left\langle \exp \left(-i\mathbf {q} \cdot \mathbf {u} \right)\right\rangle } ,代入开头的基本表达式:

DWF = exp ( ( q u ) 2 ) {\displaystyle {\text{DWF}}=\exp(-\left\langle (\mathbf {q} \cdot \mathbf {u} )^{2}\right\rangle )}

上式即为德拜-沃勒因子在教科书中常见的定义。值得注意的是上述推导都是在经典物理学的框架之下完成的;而在量子力学中,相同的结论依然成立。

进一步的推导可得

其中 q {\displaystyle q} u {\displaystyle u} 为矢量 q {\displaystyle \mathbf {q} } u {\displaystyle \mathbf {u} } 的大小。 u 2 {\displaystyle \langle u^{2}\rangle } 叫做均方位移(英语:mean squared displacement)。若入射波的波长为 λ {\displaystyle \lambda } ,且被弹性散射了 2 θ {\displaystyle 2\theta } 角度,可用下式计算出 q {\displaystyle q} 的大小:

在对蛋白质结构的研究中,“B因子(B-factor)”这个名称更为常用,其定义为

单位为 Å2。B因子可被看作是结构中不同部分的相对振动。低B因子的原子从属于结构中良好有序(well ordered)的部分,而高B因子的原子一般属于结构中非常柔性易变(flexible)的部分。蛋白质资料库中的每一ATOM记录(PDB文件格式(英语:Protein Data Bank (file format)))都会包含某特定原子的B因子信息。

相关

  • 还原性金属性或还原性是指在化学反应中原子、分子或离子失去电子的能力。失电子能力越强的粒子所属的元素金属性就越强;反之越弱,而其非金属性就越强。一般地,元素位置在同一周期越靠
  • 担架床担架床为运送伤者之救伤工具,由两支承杠支撑着一块帆布床身,承杠两端连接手柄和滑轮。一些担架床的承杠可以伸缩。床头有枕袋,可塞入柔软的物件。轮式担架也称平车、急诊推床、
  • 已革镇国将军巴布海巴布海(满语:ᠪᠠᠪᡠᡥᠠᡳ,转写:Babuhai;1596年-1643年),努尔哈赤第十一子,生母庶妃嘉穆瑚觉罗氏。巴布海生于明朝万历二十四年(1596年)十一月廿八。初授牛录章京。天聪八年(1634年),授
  • 底特律河底特律河(Detroit River)位于北美中部五大湖地区,连接圣克莱尔湖和伊利湖,全长51公里。底特律河名字源于法语“Rivière du Détroit”,意为“海峡之河(River of the Strait)”。
  • 以牙还牙以牙还牙(英语:tit for tat)是一个用于博弈论的重复囚徒困境(reiterated prisoner's dilemma)非常有效的策略。这策略最先由数学家阿纳托·拉普伯特(Anatol Rapoport)提出,并在密歇
  • 无政府和平主义无政府和平主义(Anarcho-pacifism,或是 Pacifist anarchism、Anarchist pacifism)是一种完全反对为了任何理由去使用任何形式之暴力的无政府主义思想。第一次大规模的无政府和
  • 盐酸丁二胍丁二胍,又名丁双胍,药品名丁福明,是一种口服降血糖药,于1957年被合成,主要用于二型糖尿病的治疗,与二甲双胍、苯乙双胍同属于双胍类口服降血糖药。盐酸丁二胍是白色或黄色,无味,晶体
  • 1,1,1,2-四氟乙烷1,1,1,2-四氟乙烷,别名R-134a,化学式为CH2FCF3,大气压下的沸点为−26.3°C。是一种热力学性质与二氟二氯甲烷(R-12)类似的卤代烷制冷剂,但与R-12相比,它的臭氧破坏潜势更低。1,1,1,
  • 金斑喙凤蝶金斑喙凤蝶(学名:)属凤蝶科,为中国国家林业局《国家重点保护野生动物名录》一级保护动物。
  • 扬·格雷古什扬·格雷古什(瑞典语:Ján Greguš;1991年1月29日-)是一位斯洛伐克足球运动员。在场上的位置是中场。现效力于美职球队明尼苏达联,曾效力于丹超球队哥本哈根。他也代表斯洛伐克国