费马数

✍ dations ◷ 2025-06-07 20:47:00 #数学中未解决的问题,整数数列,大数

费马数是以数学家费马命名一组自然数,具有形式:

其中为非负整数。

若2 + 1是素数,可以得到必须是2的幂。(若 = ,其中1 < , < 且为奇数,则2 + 1 ≡ (2) + 1 ≡ (−1) + 1 ≡ 0(mod 2 + 1),即2 + 1是2 + 1的约数。)也就是说,所有具有形式2 + 1的素数必然是费马数,这些素数称为费马素数。已知的费马素数只有04五个。

费马数满足以下的递回关系:

其中 ≥ 2。这些等式都可以用数学归纳法推出。从最后一个等式中,我们可以推出哥德巴赫定理:任何两个费马数都没有大于1的公因子。要推出这个,我们需要假设 0 ≤ < 且 有一个公因子 > 1。那么 能把

都整除;则能整除它们相减的差。因为 > 1,这使得 = 2。造成矛盾。因为所有的费马数显然是奇数。作为一个推论,我们得到素数个数无穷的又一个证明。

其他性质:

最小的12个费马数为:

130,439,874,405,488,189,727,484,768,796,509,903,946,608,530,841,611,892,186,895,295,776,832,416,251,471,863,574,
140,227,977,573,104,895,898,783,928,842,923,844,831,149,032,913,798,729,088,601,617,946,094,119,449,010,595,906,
710,130,531,906,171,018,354,491,609,619,193,912,488,538,116,080,712,299,672,322,806,217,820,753,127,014,424,577

173,462,447,179,147,555,430,258,970,864,309,778,377,421,844,723,664,084,649,347,019,061,363,579,192,879,108,857,591,038,330,408,837,177,983,810,868,451,
546,421,940,712,978,306,134,189,864,280,826,014,542,758,708,589,243,873,685,563,973,118,948,869,399,158,545,506,611,147,420,216,132,557,017,260,564,139,
394,366,945,793,220,968,665,108,959,685,482,705,388,072,645,828,554,151,936,401,912,464,931,182,546,092,879,815,733,057,795,573,358,504,982,279,280,090,
942,872,567,591,518,912,118,622,751,714,319,229,788,100,979,251,036,035,496,917,279,912,663,527,358,783,236,647,193,154,777,091,427,745,377,038,294,
584,918,917,590,325,110,939,381,322,486,044,298,573,971,650,711,059,244,462,177,542,540,706,913,047,034,664,643,603,491,382,441,723,306,598,834,177

其中前八个来源于(OEIS中的数列A000215)。

只有最小的12个费马数被完全分解了。

1640年,费马提出了一个猜想,认为所有的费马数都是素数。这一猜想对最小的5个费马数成立,于是费马宣称他找到了表示素数的公式。然而,欧拉在1732年否定了这一猜想,他给出了分解式:

欧拉证明费马数的约数皆可表成2+1 + 1,之后卢卡斯证明费马数的约数皆可表成2+2 + 1。

F n = 2 2 n + 1 {\displaystyle F_{n}=2^{2^{n}}+1} 个费马数。如果不等于零,那么:

假设以下等式成立:

那么 3 F n 1 1 ( mod F n ) {\displaystyle 3^{F_{n}-1}\equiv 1{\pmod {F_{n}}}} ,因此满足3k=1(mod F n {\displaystyle F_{n}} )的最小整数k一定整除 F n 1 = 2 2 n {\displaystyle F_{n}-1=2^{2^{n}}} ,它是2的幂。另一方面,k不能整除 F n 1 2 {\displaystyle {\tfrac {F_{n}-1}{2}}} ,因此它一定等于 F n 1 {\displaystyle F_{n}-1} 。特别地,存在至少 F n 1 {\displaystyle F_{n}-1} 个小于 F n {\displaystyle F_{n}} 且与 F n {\displaystyle F_{n}} 互素的数,这只能在 F n {\displaystyle F_{n}} 是素数时才能发生。

假设 F n {\displaystyle F_{n}} 是素数。根据欧拉准则,有:

其中 ( 3 F n ) {\displaystyle \left({\frac {3}{F_{n}}}\right)} 是勒让德符号。利用重复平方,我们可以发现 2 2 n 1 ( mod 3 ) {\displaystyle 2^{2^{n}}\equiv 1{\pmod {3}}} ,因此 F n 2 ( mod 3 ) {\displaystyle F_{n}\equiv 2{\pmod {3}}} ,以及 ( F n 3 ) = 1 {\displaystyle \left({\frac {F_{n}}{3}}\right)=-1} 。因为 F n 1 ( mod 4 ) {\displaystyle F_{n}\equiv 1{\pmod {4}}} ,根据二次互反律,我们便可以得出结论 ( 3 F n ) = 1 {\displaystyle \left({\frac {3}{F_{n}}}\right)=-1}

相关

  • 迷幻药物迷幻药物是指主要功效为改变认知与知觉的精神药品,与游离药品(dissociatives)、致谵妄药三者因能诱发幻觉而包含在致幻剂这一门类下。相较兴奋剂或鸦片类药物等影响意识状态效
  • 软颚化齿龈边音软颚化齿龈边音是辅音的一种。它与普通的齿龈边音一样,为浊辅音。X-SAMPA音标的符号为l。软颚化齿龈边音是齿龈边音在某些语言中的一个音位变体。因此,其国际音标符号也是由相
  • 性爱倾向性爱倾向(英语:Erotophilia)是一种人格特质,评估一个人对性的正面或负面倾向。性爱倾向是一个连续的测量尺度,两个极端分别是性爱恐惧症(erotophobia)与性爱倾向。性爱倾向者有更频
  • SSCP单链构象多态性(英语:single-strand conformation polymorphism,简称为SSCP)是一种分离核酸的技术,可以分离相同长度但序列不同的核酸(性质类似于DGGE和TGGE,但方法不同)。在非变性
  • 克里斯琴·B·安芬森克里斯蒂安·伯默尔·安芬森(英语:Christian Boehmer Anfinsen,1916年3月26日-1995年5月14日),出生于美国宾夕法尼亚州莫内森,美国生物化学家,他和斯坦福·摩尔与威廉·霍华德·斯坦
  • 大撕裂大撕裂是一种宇宙论假说,在2003年首度被发布,关于宇宙的终极命运,假说中认为宇宙中的物质,从恒星和星系到原子和次原子粒子,在有限时间的未来会因为宇宙的膨胀进一步的被撕裂。理
  • 库内内省库内内省(葡语:Cunene),位于安哥拉南部,与库安多古班哥省、威拉省、纳米贝省等省份及纳米比亚相邻。
  • 乳源瑶族自治县乳源瑶族自治县是中国广东省韶关市下辖的一个自治县,地处广东省北部,韶关市西部,县城距韶关市区36公里,县境与曲江、英德、阳山、乐昌和湖南省宜章等县、市接壤。乳源历史悠久,原
  • 丹佛轻轨丹佛轻轨(英语:RTD Light Rail),全称是地区交通局轻轨(Regional Transportation District light rail) ,是在美国科罗拉多州丹佛地区由丹佛地区交通局运营的一个轻轨系统。该系统有
  • 日本犹太人日本犹太人(日语:日本のユダヤ人,希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter