费马数

✍ dations ◷ 2024-12-22 23:45:38 #数学中未解决的问题,整数数列,大数

费马数是以数学家费马命名一组自然数,具有形式:

其中为非负整数。

若2 + 1是素数,可以得到必须是2的幂。(若 = ,其中1 < , < 且为奇数,则2 + 1 ≡ (2) + 1 ≡ (−1) + 1 ≡ 0(mod 2 + 1),即2 + 1是2 + 1的约数。)也就是说,所有具有形式2 + 1的素数必然是费马数,这些素数称为费马素数。已知的费马素数只有04五个。

费马数满足以下的递回关系:

其中 ≥ 2。这些等式都可以用数学归纳法推出。从最后一个等式中,我们可以推出哥德巴赫定理:任何两个费马数都没有大于1的公因子。要推出这个,我们需要假设 0 ≤ < 且 有一个公因子 > 1。那么 能把

都整除;则能整除它们相减的差。因为 > 1,这使得 = 2。造成矛盾。因为所有的费马数显然是奇数。作为一个推论,我们得到素数个数无穷的又一个证明。

其他性质:

最小的12个费马数为:

130,439,874,405,488,189,727,484,768,796,509,903,946,608,530,841,611,892,186,895,295,776,832,416,251,471,863,574,
140,227,977,573,104,895,898,783,928,842,923,844,831,149,032,913,798,729,088,601,617,946,094,119,449,010,595,906,
710,130,531,906,171,018,354,491,609,619,193,912,488,538,116,080,712,299,672,322,806,217,820,753,127,014,424,577

173,462,447,179,147,555,430,258,970,864,309,778,377,421,844,723,664,084,649,347,019,061,363,579,192,879,108,857,591,038,330,408,837,177,983,810,868,451,
546,421,940,712,978,306,134,189,864,280,826,014,542,758,708,589,243,873,685,563,973,118,948,869,399,158,545,506,611,147,420,216,132,557,017,260,564,139,
394,366,945,793,220,968,665,108,959,685,482,705,388,072,645,828,554,151,936,401,912,464,931,182,546,092,879,815,733,057,795,573,358,504,982,279,280,090,
942,872,567,591,518,912,118,622,751,714,319,229,788,100,979,251,036,035,496,917,279,912,663,527,358,783,236,647,193,154,777,091,427,745,377,038,294,
584,918,917,590,325,110,939,381,322,486,044,298,573,971,650,711,059,244,462,177,542,540,706,913,047,034,664,643,603,491,382,441,723,306,598,834,177

其中前八个来源于(OEIS中的数列A000215)。

只有最小的12个费马数被完全分解了。

1640年,费马提出了一个猜想,认为所有的费马数都是素数。这一猜想对最小的5个费马数成立,于是费马宣称他找到了表示素数的公式。然而,欧拉在1732年否定了这一猜想,他给出了分解式:

欧拉证明费马数的约数皆可表成2+1 + 1,之后卢卡斯证明费马数的约数皆可表成2+2 + 1。

F n = 2 2 n + 1 {\displaystyle F_{n}=2^{2^{n}}+1} 个费马数。如果不等于零,那么:

假设以下等式成立:

那么 3 F n 1 1 ( mod F n ) {\displaystyle 3^{F_{n}-1}\equiv 1{\pmod {F_{n}}}} ,因此满足3k=1(mod F n {\displaystyle F_{n}} )的最小整数k一定整除 F n 1 = 2 2 n {\displaystyle F_{n}-1=2^{2^{n}}} ,它是2的幂。另一方面,k不能整除 F n 1 2 {\displaystyle {\tfrac {F_{n}-1}{2}}} ,因此它一定等于 F n 1 {\displaystyle F_{n}-1} 。特别地,存在至少 F n 1 {\displaystyle F_{n}-1} 个小于 F n {\displaystyle F_{n}} 且与 F n {\displaystyle F_{n}} 互素的数,这只能在 F n {\displaystyle F_{n}} 是素数时才能发生。

假设 F n {\displaystyle F_{n}} 是素数。根据欧拉准则,有:

其中 ( 3 F n ) {\displaystyle \left({\frac {3}{F_{n}}}\right)} 是勒让德符号。利用重复平方,我们可以发现 2 2 n 1 ( mod 3 ) {\displaystyle 2^{2^{n}}\equiv 1{\pmod {3}}} ,因此 F n 2 ( mod 3 ) {\displaystyle F_{n}\equiv 2{\pmod {3}}} ,以及 ( F n 3 ) = 1 {\displaystyle \left({\frac {F_{n}}{3}}\right)=-1} 。因为 F n 1 ( mod 4 ) {\displaystyle F_{n}\equiv 1{\pmod {4}}} ,根据二次互反律,我们便可以得出结论 ( 3 F n ) = 1 {\displaystyle \left({\frac {3}{F_{n}}}\right)=-1}

相关

  • 道义逻辑道义逻辑是一种非标准的模态逻辑。它研究“应当”、“可以”或 “许可”、“禁止” 这样一些道义概念的逻辑。应该(obligate)p:Op允许(permit)p:Pp禁止(forbid)p:Fp应该...不...(oblig
  • 尿滞留尿潴留(英语:renal retention或 urinary retention),又称尿滞留、尿液滞留,是膀胱内的尿液无法排出的状况,最常见的原因是良性前列腺增生症。正常成年男性的膀胱涨满时,容积约为500
  • 男雌男雌是一个外来词,来自于英文中的“Hefemale”这个字汇。意指经缩胸手术的女性得到了部分男性的生理特征(胸部),但却已去除掉了部分的女性生殖器。也可说男雌为变性人。
  • 新赫布里底板块新海布里地板块(New Hebrides Plate)是太平洋的小型板块,位于岛屿国家瓦努阿图附近,西南面的印度-澳洲板块沉入新海布里地板块。新海布里地隐没带在过去25年发生超过7级或以上的
  • 帕木竹巴帕木竹巴可以指:
  • 美国小儿科学会美国儿科学会(英语:American Academy of Pediatrics,簡稱AAP)是美国的儿科研究学会,总部位于伊利诺伊州埃尔克格罗夫村(英语:Elk Grove Village),并在华盛顿特区设有办公室。该学会由
  • 美洲杯美洲杯(Copa América)是一项由南美足协成员国参加最重要的国家级足球赛事,赛事前身名为南美足球锦标赛(Campeonato Sud Americano de Football),亦是全世界历史最悠久的国家级足
  • 阿布哈里卜监狱巴格达中央监狱,旧称阿布格莱布监狱(阿拉伯语:سجن أبو غريب‎ Sijn Abu Ghuraib‎;意为“乌鸦之父”或“乌鸦之所”),为于伊拉克巴格达以西32公里的阿布格莱布城。在20
  • 加拿大国家图书馆暨档案馆加拿大国家图书馆暨档案馆(英语:Library and Archives Canada,简称 LAC)是加拿大的国家图书馆与档案馆,位于首都渥太华。加拿大国家图书馆暨档案馆隶属于加拿大文化遗产部之下,是
  • 弗朗索瓦一世 (法兰西)弗朗索瓦一世 (法语:François I,1494年9月12日-1547年3月31日),即位前通常称昂古莱姆的弗朗索瓦(François de Angoulême),又称大鼻子弗朗索瓦(François au Grand Nez),骑士国王(le Ro