费马数

✍ dations ◷ 2025-11-23 20:17:54 #数学中未解决的问题,整数数列,大数

费马数是以数学家费马命名一组自然数,具有形式:

其中为非负整数。

若2 + 1是素数,可以得到必须是2的幂。(若 = ,其中1 < , < 且为奇数,则2 + 1 ≡ (2) + 1 ≡ (−1) + 1 ≡ 0(mod 2 + 1),即2 + 1是2 + 1的约数。)也就是说,所有具有形式2 + 1的素数必然是费马数,这些素数称为费马素数。已知的费马素数只有04五个。

费马数满足以下的递回关系:

其中 ≥ 2。这些等式都可以用数学归纳法推出。从最后一个等式中,我们可以推出哥德巴赫定理:任何两个费马数都没有大于1的公因子。要推出这个,我们需要假设 0 ≤ < 且 有一个公因子 > 1。那么 能把

都整除;则能整除它们相减的差。因为 > 1,这使得 = 2。造成矛盾。因为所有的费马数显然是奇数。作为一个推论,我们得到素数个数无穷的又一个证明。

其他性质:

最小的12个费马数为:

130,439,874,405,488,189,727,484,768,796,509,903,946,608,530,841,611,892,186,895,295,776,832,416,251,471,863,574,
140,227,977,573,104,895,898,783,928,842,923,844,831,149,032,913,798,729,088,601,617,946,094,119,449,010,595,906,
710,130,531,906,171,018,354,491,609,619,193,912,488,538,116,080,712,299,672,322,806,217,820,753,127,014,424,577

173,462,447,179,147,555,430,258,970,864,309,778,377,421,844,723,664,084,649,347,019,061,363,579,192,879,108,857,591,038,330,408,837,177,983,810,868,451,
546,421,940,712,978,306,134,189,864,280,826,014,542,758,708,589,243,873,685,563,973,118,948,869,399,158,545,506,611,147,420,216,132,557,017,260,564,139,
394,366,945,793,220,968,665,108,959,685,482,705,388,072,645,828,554,151,936,401,912,464,931,182,546,092,879,815,733,057,795,573,358,504,982,279,280,090,
942,872,567,591,518,912,118,622,751,714,319,229,788,100,979,251,036,035,496,917,279,912,663,527,358,783,236,647,193,154,777,091,427,745,377,038,294,
584,918,917,590,325,110,939,381,322,486,044,298,573,971,650,711,059,244,462,177,542,540,706,913,047,034,664,643,603,491,382,441,723,306,598,834,177

其中前八个来源于(OEIS中的数列A000215)。

只有最小的12个费马数被完全分解了。

1640年,费马提出了一个猜想,认为所有的费马数都是素数。这一猜想对最小的5个费马数成立,于是费马宣称他找到了表示素数的公式。然而,欧拉在1732年否定了这一猜想,他给出了分解式:

欧拉证明费马数的约数皆可表成2+1 + 1,之后卢卡斯证明费马数的约数皆可表成2+2 + 1。

F n = 2 2 n + 1 {\displaystyle F_{n}=2^{2^{n}}+1} 个费马数。如果不等于零,那么:

假设以下等式成立:

那么 3 F n 1 1 ( mod F n ) {\displaystyle 3^{F_{n}-1}\equiv 1{\pmod {F_{n}}}} ,因此满足3k=1(mod F n {\displaystyle F_{n}} )的最小整数k一定整除 F n 1 = 2 2 n {\displaystyle F_{n}-1=2^{2^{n}}} ,它是2的幂。另一方面,k不能整除 F n 1 2 {\displaystyle {\tfrac {F_{n}-1}{2}}} ,因此它一定等于 F n 1 {\displaystyle F_{n}-1} 。特别地,存在至少 F n 1 {\displaystyle F_{n}-1} 个小于 F n {\displaystyle F_{n}} 且与 F n {\displaystyle F_{n}} 互素的数,这只能在 F n {\displaystyle F_{n}} 是素数时才能发生。

假设 F n {\displaystyle F_{n}} 是素数。根据欧拉准则,有:

其中 ( 3 F n ) {\displaystyle \left({\frac {3}{F_{n}}}\right)} 是勒让德符号。利用重复平方,我们可以发现 2 2 n 1 ( mod 3 ) {\displaystyle 2^{2^{n}}\equiv 1{\pmod {3}}} ,因此 F n 2 ( mod 3 ) {\displaystyle F_{n}\equiv 2{\pmod {3}}} ,以及 ( F n 3 ) = 1 {\displaystyle \left({\frac {F_{n}}{3}}\right)=-1} 。因为 F n 1 ( mod 4 ) {\displaystyle F_{n}\equiv 1{\pmod {4}}} ,根据二次互反律,我们便可以得出结论 ( 3 F n ) = 1 {\displaystyle \left({\frac {3}{F_{n}}}\right)=-1}

相关

  • 蓄电池br /smallspan style=font-weight:normal;/span蓄电池(英语:Storage battery),俗称电瓶,又称可充电电池(英语:Rechargeable battery),泛指所有在电量用到一定程度之后可以被再次充电、反复使用的化学能电池的总称。之所以可以充电
  • 紧密连接紧密连接(Tight junction),又称闭锁小带(Zonula occludens)、封闭小带,是细胞膜共同构成一个事实上液体无法穿透的屏障的两个细胞间紧密相连的区域。它是一类只在脊椎动物中出现的
  • 疱疮神疱疮神(日语:ホウソウシン或ホウソウカミ)乃是日本及琉球民间将天花(日语称为疱疮)拟神化的凶神,别名为笠神、芋明神((日文)イモミョウジン)、裳神、痘鬼神等。据成书于平安时代的《续
  • 梁赞州梁赞州(俄语:Рязанская область,罗马化:Ryazanskaya oblast)是俄罗斯联邦主体之一,属中央联邦管区。面积39,600平方公里,人口1,227,910(2002年)。首府梁赞,在俄罗斯首
  • 迪克·切尼理查德·布鲁斯·“迪克”·切尼(英语:Richard Bruce "Dick" Cheney,1941年1月30日-)是小布什任内的美国副总统。切尼被广泛认为是美国历史上最有实权的副总统。切尼于1941年1月3
  • 班吉班吉(法语:Bangui)是中非共和国首都,位于乌班吉河(Oubangi 或 Ubangi)西岸,东面和南面与刚果民主共和国接壤,是全球少数设于国界附近的首都之一。产棉花、咖啡、木制品,另有小工业区
  • 华南师范大学华南师范大学(英语:South China Normal University,缩写作:SCNU),简称华南师大或华师,是一所位于中华人民共和国广东省的公立综合研究型大学,由广东省人民政府和教育部共建。华南师
  • 爱蜜莉·布朗艾米莉·奥莉维娅·莉亚·布朗特(英语:Emily Olivia Leah Blunt,1983年2月23日-),英国女演员,曾于第64届金球奖上入围两个奖项,分别为最佳电影女配角奖(因《穿普拉达的女王》)及最佳电
  • 寰宇新闻二台寰宇新闻台湾台(英语:Global News Taiwan),是台湾亚洲卫星电视股份有限公司旗下的卫星新闻频道。
  • 失眠失眠(拉丁语:Insomnia)是一种不容易自然地进入睡眠状态的症状。可能是不易入睡(难以入睡),或是很难维持较长时间的深度睡眠(难以维持睡眠)。失眠一般会伴随着白天精神不佳、嗜睡、易