洛特卡-沃尔泰拉方程

✍ dations ◷ 2025-11-25 20:05:23 #生态学,应用数学,非线性常微分方程,极限环

洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。

以下将式子乘开,如此可以较容易地解释方程式的实际意义。

第一式所表达的是猎物族群的增值速度:

此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 表现。如果 或 其中一个为零,则皆有可能是没有捕食行为出现。

由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。

第二式所表达的是掠食者族群的增值速度:

此方程式中的 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) 表示掠食者的自然死亡,为指数衰减。

由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。

此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。

在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。

族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。

求解上述方程式的 与 可得:

以及

由此可知有两组解。

第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。

不动点的稳定性可以利用偏导数,将其以线性化方式呈现。

产生的掠食者猎物模型之雅可比矩阵如下:

当数值为(0,0)稳定状态,则雅可比矩阵变成:

此矩阵的特征值为:

模型中的 与 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。

此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。

在第二不动点求 值可得:

此矩阵的特征值为:

当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。

d r d t = 2 r ( t ) α r ( t ) f ( t ) 1 + s r ( t ) {\displaystyle {\frac {dr}{dt}}=2*r(t)-{\frac {\alpha *r(t)*f(t)}{1+s*r(t)}}} ;

d f d t = f ( t ) + α r ( t ) f ( t ) 1 + s r ( t ) {\displaystyle {\frac {df}{dt}}=-f(t)+{\frac {\alpha *r(t)*f(t)}{1+s*r(t)}}}

图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。

相关

  • 2013年5月
  • 乳腺肿瘤乳腺癌是由乳房组织发展成的癌症。乳腺癌的征象包括乳房肿块、乳房形状改变、皮肤凹陷、乳头分泌物或是皮肤出现红色鳞屑状斑块。而出现远端转移的病患,可能会有骨痛(英语:Bone
  • dGMP去氧鸟苷单磷酸(Deoxyguanosine monophosphate,dGMP)是一种结构与鸟苷单磷酸相似,但五碳糖的2号碳上少了一个-OH基的分子,并由单一的氢原子取而代之。
  • 纽约科学院纽约科学院(New York Academy of Sciences)是一个独立的非营利机构,成立于1817年,在全球150个国家有近25000名会员。全名为 Heinz R. Pagels 科学家人权奖(全部得奖人名单)。曾经
  • 眼 (佛教)眼(梵语:Cakṣus,巴利语:cakkhu),字面意义为眼睛之意,在佛教理论中,眼可以分成五种层次:肉眼、天眼、慧眼、法眼和佛眼,又称五眼。在三转十二行相中,由四谛可生眼、智、明、觉四智。《
  • 搜寻地外文明计划搜寻地外文明计划(SETI),是对所有在搜寻地外文明的团体的统称,不是只代表一个组织。这其中较著名的有学术单位包括哈佛大学和柏克莱加州大学,非营利组织SETI协会。这些组织致力于
  • 恭让王高丽恭让王(朝鲜语:고려 공양왕/高麗 恭讓王 Goryeo Gong'yang'wang;1345年-1394年),讳王瑶(朝鲜语:왕요/王瑤 Wang Yo),高丽王朝第34位国王(1388年至1392年在位),高丽神宗七世孙。明洪武
  • 马里布马里布市(英语:Malibu)是美国加利福尼亚州洛杉矶县的一座富裕城市。在2000年的人口调查中,该市人口为12,575人。最早原是美国原住民“丘马希族”的居住地,原名为Humaliwo,意思是海
  • 钧窑钧窑也称均窑,均州窑是宋代初年,在今河南省禹州市神垕镇钧台建立的瓷窑。钧窑古瓷窑址现在是全国重点文物保护单位,原址处建有“禹州钧官窑址博物馆”。钧瓷是中国地理标志产品
  • 宗教社会主义宗教社会主义是指在宗教价值观念的基础上实行社会主义的一种思想。当社会主义产生之时,几个主要宗教在其教旨中均发现包含社会主义原则、理念,或与之相同、相近。因此,宗教社会