洛特卡-沃尔泰拉方程

✍ dations ◷ 2025-11-25 08:12:50 #生态学,应用数学,非线性常微分方程,极限环

洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。

以下将式子乘开,如此可以较容易地解释方程式的实际意义。

第一式所表达的是猎物族群的增值速度:

此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 表现。如果 或 其中一个为零,则皆有可能是没有捕食行为出现。

由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。

第二式所表达的是掠食者族群的增值速度:

此方程式中的 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) 表示掠食者的自然死亡,为指数衰减。

由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。

此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。

在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。

族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。

求解上述方程式的 与 可得:

以及

由此可知有两组解。

第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。

不动点的稳定性可以利用偏导数,将其以线性化方式呈现。

产生的掠食者猎物模型之雅可比矩阵如下:

当数值为(0,0)稳定状态,则雅可比矩阵变成:

此矩阵的特征值为:

模型中的 与 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。

此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。

在第二不动点求 值可得:

此矩阵的特征值为:

当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。

d r d t = 2 r ( t ) α r ( t ) f ( t ) 1 + s r ( t ) {\displaystyle {\frac {dr}{dt}}=2*r(t)-{\frac {\alpha *r(t)*f(t)}{1+s*r(t)}}} ;

d f d t = f ( t ) + α r ( t ) f ( t ) 1 + s r ( t ) {\displaystyle {\frac {df}{dt}}=-f(t)+{\frac {\alpha *r(t)*f(t)}{1+s*r(t)}}}

图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。

相关

  • 艾尔帕索艾尔帕索(西班牙语:El Paso)是美国德克萨斯州艾尔帕索县县治,位于德州极西部,隔格兰德河与墨西哥的华雷斯城相望。是该州第六大城、全国第十九大城市 (2006年估计人口为609,415)。
  • 证明论证明论是数理逻辑的一个分支,它将数学证明表达为形式化的数学客体,从而通过数学技术来简化对他们的分析。证明通常用归纳式地定义的数据结构来表达,例如链表,盒链表,或者树,它们根
  • 皮博迪的不可能的历史皮博迪先生(英语:Mr. Peabody),是梦工厂2014年电影《天才眼鏡狗》的主角之一。他是一只会说话、非常聪明的狗,也是个商业大亨、发明家、科学家、诺贝尔奖得主、美食家、两次奥
  • 鉴真鉴真(688年-763年6月25日),唐朝僧人,俗姓淳于,江苏扬州江阳县人,律宗南山宗传人,日本佛教祖师。鉴真和尚是日本建筑和医学的发明者。唐武后垂拱四年(688年),鉴真出生于扬州,俗姓淳于。70
  • 战争部美国战争部(United States Department of War)是一个已经废除的美国内阁部级单位,负责管辖美国陆军并维护其装备。在1798年美国海军部建立和1947年美国空军部建立之前,亦曾负责
  • R. Penrose罗杰·彭罗斯爵士,OM,FRS(英语:Sir Roger Penrose,1931年8月8日-),英国数学物理学家与牛津大学数学系W. W. Rouse Ball名誉教授。他在数学物理方面的工作拥有高度评价,特别是对广义相
  • 原生木质部木质部(英语:Xylem)是维管植物的运输组织,负责将根吸收的水分及溶解于水里面的离子往上运输,以供其他器官组织使用,另外还具有支撑植物体的作用。木质部由导管、管胞、木射线、薄
  • 广东话广东话或广东语,可指:
  • 风神庙坐标:22°59′50″N 120°11′45″E / 22.9971131°N 120.1957301°E / 22.9971131; 120.1957301风神庙是位于台湾台南市中西区的直辖市定古迹,是全台湾现存唯一一间主祀风神
  • 代表人物山东人,长期居住在山东并一般说冀鲁官话、胶辽官话的,或出生地、户籍、籍贯在山东的汉族人。山东人并没很严格的定义,使得其总人口不好统计,基本上可以认为是山东省人口数,更广义