洛特卡-沃尔泰拉方程

✍ dations ◷ 2025-09-08 01:55:20 #生态学,应用数学,非线性常微分方程,极限环

洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。

以下将式子乘开,如此可以较容易地解释方程式的实际意义。

第一式所表达的是猎物族群的增值速度:

此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 表现。如果 或 其中一个为零,则皆有可能是没有捕食行为出现。

由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。

第二式所表达的是掠食者族群的增值速度:

此方程式中的 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) 表示掠食者的自然死亡,为指数衰减。

由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。

此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。

在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。

族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。

求解上述方程式的 与 可得:

以及

由此可知有两组解。

第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。

不动点的稳定性可以利用偏导数,将其以线性化方式呈现。

产生的掠食者猎物模型之雅可比矩阵如下:

当数值为(0,0)稳定状态,则雅可比矩阵变成:

此矩阵的特征值为:

模型中的 与 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。

此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。

在第二不动点求 值可得:

此矩阵的特征值为:

当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。

d r d t = 2 r ( t ) α r ( t ) f ( t ) 1 + s r ( t ) {\displaystyle {\frac {dr}{dt}}=2*r(t)-{\frac {\alpha *r(t)*f(t)}{1+s*r(t)}}} ;

d f d t = f ( t ) + α r ( t ) f ( t ) 1 + s r ( t ) {\displaystyle {\frac {df}{dt}}=-f(t)+{\frac {\alpha *r(t)*f(t)}{1+s*r(t)}}}

图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。

相关

  • 芝加哥芝加哥(英语:Chicago),常被当地华人简称为芝城,位于美国中西部,属伊利诺伊州,为库克县县治,东临密歇根湖,辖区内人口272万。芝加哥及其郊区组成的大芝加哥地区,人口超过900万,是美国仅
  • 跑步跑步,又称作疾走或奔走,在文言文与部分方言中则称走。其定义是指陆生动物使用足部,移动最快捷的方法。它在运动上的定义是一种步伐,有时双脚不会同一时间碰到地面。它亦是一种有
  • 静电感应静电感应是物体内的电荷因受外界电荷的影响而重新分布。这个现象由英国科学家约翰·坎通和瑞典科学家约翰·卡尔·维尔克(英语:Johan Carl Wilcke)分别在1753年和1762年发现。
  • 赫塘期赫塘期(英语:Hettangian)是侏罗纪的第一个时期,年代大约位于201.3–199.3百万年前。
  • 杨石先杨石先(1897年1月8日-1985年2月19日),原名绍曾,又名允柱,原籍安徽怀宁,生于浙江杭州,蒙古族,中国化学家和教育家,在应用化学研究和南开大学的建设方面卓有成就,是南开大学的第三任校长
  • 蒋兴权蒋兴权(1940年-),辽宁兴城人,中国篮球职业教练,曾两度出任中国国家男子篮球队主教练,他也入选了新中国篮球50杰。蒋兴权于1958年毕业于沈阳体院预科,1960年至1970年间效力于辽宁男篮
  • 2018年美国中期选举2018年美国中期选举主要在2018年11月6日周二举行,本次中期选举是在共和党籍总统唐纳德·特朗普的第一届总统任期举行,被视为2020年美国总统选举的风向指标。美国众议院所有435
  • Smithsonian Institution史密森尼学会,有时也译作史密松学院(Smithsonian Institution /smɪθˈsoʊniən/ smith-SOE-nee-ən)是美国一系列博物馆和研究机构的集合组织,其地位大致相当于其他国家的国
  • 水源水源可以指:
  • 邻苯二甲酸二异庚酯邻苯二甲酸二异庚酯(英语:Diisoheptyl phthalate)是一种邻苯二甲酸酯,由一个邻苯二甲酸和两个异庚醇酯化形成,化学式为 C22H34O4,常作为塑化剂使用。