洛特卡-沃尔泰拉方程

✍ dations ◷ 2025-12-05 19:36:00 #生态学,应用数学,非线性常微分方程,极限环

洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。

以下将式子乘开,如此可以较容易地解释方程式的实际意义。

第一式所表达的是猎物族群的增值速度:

此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 表现。如果 或 其中一个为零,则皆有可能是没有捕食行为出现。

由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。

第二式所表达的是掠食者族群的增值速度:

此方程式中的 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) 表示掠食者的自然死亡,为指数衰减。

由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。

此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。

在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。

族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。

求解上述方程式的 与 可得:

以及

由此可知有两组解。

第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。

不动点的稳定性可以利用偏导数,将其以线性化方式呈现。

产生的掠食者猎物模型之雅可比矩阵如下:

当数值为(0,0)稳定状态,则雅可比矩阵变成:

此矩阵的特征值为:

模型中的 与 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。

此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。

在第二不动点求 值可得:

此矩阵的特征值为:

当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。

d r d t = 2 r ( t ) α r ( t ) f ( t ) 1 + s r ( t ) {\displaystyle {\frac {dr}{dt}}=2*r(t)-{\frac {\alpha *r(t)*f(t)}{1+s*r(t)}}} ;

d f d t = f ( t ) + α r ( t ) f ( t ) 1 + s r ( t ) {\displaystyle {\frac {df}{dt}}=-f(t)+{\frac {\alpha *r(t)*f(t)}{1+s*r(t)}}}

图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。

相关

  • X-单体综合征 (XO)特纳氏综合征(Turner syndrome,简称TS)也被称作Ullrich-Turner氏综合征(Ullrich-Turner syndronme)、性腺发育不良(Gonodal dysgenesis)以及45,X,是雌性个体因X染色体部分或完全缺失
  • 2007年美国宠物食品污染事件2007年美国宠物食品污染事件是指2007年3月16日至今,总部位于加拿大的宠物食品厂家菜单食品(“Menu Foods”)因其原料涉嫌污染导致猫狗宠物死亡,而紧急回收产品的事件。此次事件
  • 麦角约50种, 包括: C. africana C. fusiformis 雀稗麦角菌 C. paspali C. purpurea C. sorghi C. zizaniae麦角是谷类作物(如小麦)被真菌感染所形成的黑色子实体。它是由多种叫做
  • 凤山水库凤山水库,是台湾的一座水库,将近四分之三位于高雄市小港区,其余位在林园区,而大门(东门)则位在大寮区,主要提供工业用水服务,是大高雄地区重要的工业用水供应地。水库坝址位于凤山丘
  • 弗雷德·瓦格斯弗雷德·瓦格斯(法语:Fred Vargas,1957年6月7日-),原名芙蕾德丽克·奥杜万-卢佐(Frédérique Audoin-Rouzeau),法国历史学家、考古学家及作家。作为一个考古学家,她曾于法国国家科学
  • 瘀伤瘀斑是指直径10毫米以上的皮下出血点。当身体被硬物捶击时,皮肤下的血管会破裂,造成血液流出到相邻的皮下组织,这些积聚在皮下组织的血液会在表皮外显现成瘀斑。通常小而痛淤斑
  • 高地区高地议会区(英语:Highland Council Area、苏格兰盖尔语:Comhairle na Gàidhealtachd、低地苏格兰语:Hieland Cooncil Aurie)是苏格兰下辖32个一级行政区之一,也是苏格兰(与整个英
  • 卡顿卡顿县(Cotton County, Oklahoma)是美国奥克拉荷马州南部的一个县,南隔雷德河与德克萨斯州相望。面积1,663平方公里。根据美国2000年人口普查,共有人口6,614人。县治沃尔特斯 (W
  • 双子座12号双子座12号(Gemini XII)是双子座计划中的第十次载人飞行任务,也是美国的第十八次太空任务(包括飞行高度超过100千米的X-15任务)。替补成员同样接受任务训练,在主力成员因各种原因
  • 大王鬼神虾大王鬼神虾(学名:Sclerocrangon rex,日文名:ダイオウキジンエビ )为十足目褐虾科硬褐虾属的一种虾。北海道知床半岛的地方名为ガサエビ。大王鬼神虾体长约25公分,是褐虾科中最大型