双蛋问题

✍ dations ◷ 2024-09-20 13:45:51 #物理学专题,物理科学,物理学实验

双蛋问题(The Two Eggs Problem)是一个经典的算法问题,它经常被描述为“给你两个相同的异常坚硬的鸡蛋,通过在一栋100层的楼的不同层扔下鸡蛋进行实验,试验出可以摔碎该鸡蛋的最高楼层(临界楼层)。已知未碎的鸡蛋可以重复使用。求最少的实验次数n,使得在n次实验后,一定能判断出该临界楼层。”

该问题可以扩展为这样一类问题: 在N个鸡蛋,k层楼的条件下,找到一个最小的m,使得存在一种方案,在m次实验以后,一定能找到鸡蛋的临界楼层。

为了更加精确地思考问题,该问题中必须满足以下的条件:

此时,你有2个鸡蛋,楼高100层。我们可以先思考有1个鸡蛋和有无数个鸡蛋的情况。

此时,由于只有一个鸡蛋,所以一旦破碎,那么就无法继续进行试验,我们只能从第1层开始,一层一层地实验。在这种情况下最多需要99次实验。

容易的解决方案是二分法, log 2 100 6.644 < 7 {\displaystyle \log _{2}{100}\approx 6.644<7} ,所以如果我们有无数个鸡蛋,我们最多只需要7次就可以试验出。比如,先在64楼扔一次鸡蛋,如果碎了,那就到32层扔第二次,如果第二次扔鸡蛋又碎了,再到16层去扔第三次,如果这次没有碎,那你可以再到第24层去扔第四次,又没碎,那就去28层扔第五次,还是没有碎,再到30层扔第六次,这次又碎了,再到29层扔第七次,第七次碎了,那么临界楼层就是第28层,第七次没碎,临界楼层就是第29层。所以无数个鸡蛋最多只需要7次就可以实验。

借助于二分法提供的分组思想,我们可以尝试将100平均分成10组,用第一个鸡蛋在每组最后一层进行实验,这样可以实验出临界楼层在哪一组。然后再用第二个鸡蛋从该组第一层依次实验。这种方案的最坏情况是19次。

我们发现,如果19层是临界楼层,只需要实验11次,而如果临界层是99层,就需要实验19次。因此我们是否可以将19次平均到11次里一部分?为此,有以下方案,第一组 x {\displaystyle x} 人,第二组 ( x 1 ) {\displaystyle (x-1)} 人,第三组 ( x 2 ) {\displaystyle (x-2)} 人,……第x组1人,考虑到 x + ( x 1 ) + ( x 2 ) + + 3 + 2 + 1 = x ( x + 1 ) 2 > 100 {\displaystyle x+(x-1)+(x-2)+\cdots +3+2+1={\frac {x(x+1)}{2}}>100} ,解得 x > 13.65 {\displaystyle x>13.65} ,所以 x = 14 {\displaystyle x=14} 时,最多需要14次便可以找出临界楼层。

下面是双蛋问题的几个推广问题。

类似于之前的方法,只需要 x + ( x 1 ) + ( x 2 ) + + 3 + 2 + 1 = x ( x + 1 ) 2 > k {\displaystyle x+(x-1)+(x-2)+\cdots +3+2+1={\frac {x(x+1)}{2}}>k} 即可,可以求出 k = 1 + 1 + 8 k 2 {\displaystyle k=\left\lceil {\frac {-1+{\sqrt {1+8k}}}{2}}\right\rceil } (参见取整函数、高斯符号)

让我们定义一个函数 f ( d , n ) {\displaystyle f(d,n)} ,表示有 n {\displaystyle n} 个鸡蛋,通过 d {\displaystyle d} 次实验就一定能够判断出临界楼层的最大楼层。 如果鸡蛋打破,我们将能够将临界楼层范围缩小到f(d−1,n−1)层;否则我们将能够把范围缩小到 f(d-1,n)层。

因此, f ( d , n ) = 1 + f ( d 1 , n 1 ) + f ( d 1 , n ) {\displaystyle f(d,n)=1+f(d-1,n-1)+f(d-1,n)} 。这只是一个递归关系,而我们必须找到一个函数 f(d,n)。

因此,我们将定义一个辅助函数 g ( d , n ) : g ( d , n ) = f ( d , n + 1 ) f ( d , n ) {\displaystyle g(d,n):g(d,n)=f(d,n+1)-f(d,n)}

根据我们的第一个方程

g ( d , n ) = f ( d , n + 1 ) f ( d , n ) = f ( d 1 , n + 1 ) + f ( d 1 , n ) + 1 f ( d 1 , n ) f ( d 1 , n 1 ) 1 = + = g ( d 1 , n ) + g ( d 1 , n 1 ) {\displaystyle {\begin{aligned}g(d,n)&=f(d,n+1)-f(d,n)\\&=f(d-1,n+1)+f(d-1,n)+1-f(d-1,n)-f(d-1,n-1)-1\\&=+\\&=g(d-1,n)+g(d-1,n-1)\end{aligned}}} 函数 g ( d , n ) {\displaystyle g(d,n)} 可以写成 g ( d , n ) = ( d n ) {\displaystyle g(d,n)={\binom {d}{n}}} (参见二项式系数)

但是我们有一个问题:根据之前的关系 f {\displaystyle f} g {\displaystyle g} ,对于任何 n {\displaystyle n} f ( 0 , n ) {\displaystyle f(0,n)} 以及 g ( 0 , n ) {\displaystyle g(0,n)} 都是 0 {\displaystyle 0} 。然而,在 n = 0 {\displaystyle n=0} 时会发生矛盾,因为 g ( 0 , 0 ) = ( 0 0 ) = 1 {\displaystyle g(0,0)={\binom {0}{0}}=1} ,但对于每一个 n {\displaystyle n} g ( 0 , n ) {\displaystyle g(0,n)} 应该是 0 {\displaystyle 0} !

我们可以通过重定义 g ( d , n ) {\displaystyle g(d,n)} 修复这个问题如下:

g ( d , n ) = ( d n + 1 ) {\displaystyle g(d,n)={\binom {d}{n+1}}}

递归是仍然有效。

现在,展开f(d,n),我们可以把它写成

f ( d , n ) = + + + + f ( d , 0 ) . {\displaystyle {\begin{aligned}f(d,n)=&\\+&\\+&\cdots \\+&\\+&f(d,0).\end{aligned}}}

我们知道 f ( d , 0 ) = 0 {\displaystyle f(d,0)=0} ,因此

f ( d , n ) = g ( d , n 1 ) + g ( d , n 2 ) + + g ( d , 0 ) {\displaystyle f(d,n)=g(d,n-1)+g(d,n-2)+\cdots +g(d,0)}

我们也知道

g ( d , n ) = ( d n + 1 ) {\displaystyle g(d,n)={\binom {d}{n+1}}}


因此,

g ( d , n 1 ) + g ( d , n 2 ) + + g ( d , 0 ) = ( d n ) + ( d n 1 ) + + ( d 1 ) {\displaystyle g(d,n-1)+g(d,n-2)+\cdots +g(d,0)={\binom {d}{n}}+{\binom {d}{n-1}}+\cdots +{\binom {d}{1}}}

最后,

f ( d , n ) = i = 1 n ( d i ) {\displaystyle f(d,n)=\sum _{i=1}^{n}{\binom {d}{i}}}

我们知道 f ( d , n ) {\displaystyle f(d,n)} 是所有最少实验次数为 d {\displaystyle d} 的总楼层数中最大的一个,我们只要找到一个 k {\displaystyle k} 满足以下条件即可:

f ( d , n ) k {\displaystyle f(d,n)\geqslant k}

使用我们最后的公式,

i = 1 n ( d i ) k {\displaystyle \sum _{i=1}^{n}{\binom {d}{i}}\geqslant k}

让我们来试验一下:

f ( t , 3 ) = i = 1 3 ( d i ) = t ( t 2 + 5 ) 6 {\displaystyle f(t,3)=\sum _{i=1}^{3}{\binom {d}{i}}={\frac {t(t^{2}+5)}{6}}}

因此有 f ( 8 , 3 ) = 92 , f ( 9 , 3 ) = 129 {\displaystyle f(8,3)=92,f(9,3)=129}

所以我们如果有三个鸡蛋,可以保证在9次实验之内找到临界楼层。

除了解析法之外,最常见的方法是递归法。

想象以下情况:n个鸡蛋,k层楼,然后你把鸡蛋在连续的h层中的第i层进行试验。

如果鸡蛋打破:这个问题会减少为n-1鸡蛋和 i-1个剩余楼层的问题;如果不打破:这个问题会减少为n鸡蛋和h-i个剩余楼层的问题。现在我们可以定义一个函数 W ( n , h ) {\displaystyle W(n,h)} 计算所需的最小实验次数:

我们可以编写上述结果为确定找到下面的递归 W ( n , h ) {\displaystyle W(n,h)} :

以下代码由C++编写

W ( n , h ) = 1 + m i n ( m a x ( W ( n 1 , i 1 ) , W ( n , h i ) ) ) {\displaystyle W(n,h)=1+min(max(W(n-1,i-1),W(n,h-i)))}

#include <iostream>#include <iostream>#include <limits.h>using namespace std;//Compares 2 values and returns the bigger oneint max(int a,int b) {    int ans=(a>b)?a:b;    return ans;}//Compares 2 values and returns the smaller oneint min(int a,int b){    int ans=(a<b)?a:b;    return ans;}int egg(int n,int h){    //Basis case    if(n==1) return h;    if(h==0) return 0;    if(h==1) return 1;    int minimum=INT_MAX;    //Recursion to find egg(n,k). The loop iterates i: 1,2,3,...h    for(int x=1;x<=h;x++) minimum=min(minimum,(1+max(egg(n,h-x),egg(n-1,x-1))));    return minimum;}int main(){    int e;//Number of eggs    int f;//Number of floors    cout<<"Egg dropping puzzle\n\nNumber of eggs:";    cin>>e;    cout<<"\nNumber of floors:";    cin>>f;    cout<<"\nNumber of drops in the worst case:"<<egg(e,f);    return 0;}}

参见

  • 递归
  • 二项式系数
  • 取整函数、高斯符号


相关

  • AST天冬氨酸氨基转移酶(英语:Aspartate Transaminase,缩写 AST),也称作谷草转氨酶(SGOT),是一种磷酸吡哆醛蛋白质,也可以作用于L-苯丙氨酸、L-酪氨酸和L-色氨酸(EC 2.6.1.1)。谷草转氨酶
  • RAD51n/an/an/an/an/an/an/an/an/an/aRad51是真核生物体内的一种蛋白质,与原核生物的RecA同源,是一种高度保守的蛋白,从酵母菌到人类之间的变异不大。人类的Rad51含有339个氨基酸,于
  • 马卢尔国家森林马卢尔国家森林(英语:Malheur National Forest)是座美国国家森林,位于俄勒冈州东部(英语:eastern Oregon),包含1.4 × 106英亩(5,700平方千米)多的蓝山山地。森林有大盆地沙漠、草原
  • NKC捷克共和国国家图书馆(捷克语:Národní knihovna České republiky)是捷克共和国的一所中央图书馆,由该国文化部管理。该图书馆的主要建筑物位于布拉格的克莱门特学院历史建筑
  • 呼吸道上皮伪复层纤毛柱状上皮属于另一种单层柱状上皮的变异,细胞皆具有纤毛,又可以称为假复层纤毛柱状上皮。之所以称做伪复层是因为其在切片下看起来细胞好像多于一层所造成的错误观念
  • 白云鄂博铁矿白云鄂博铁矿是位于中国内蒙古自治区中部的一座大型露天铁-稀土矿床,1927年由著名地质学家丁道衡发现。白云鄂博位于乌兰察布草原上,北距蒙古国106公里,南距包头市市区149公里
  • 兰实兰实(泰语:เทศบาลนครรังสิต Thetsaban Nakhon Rangsit)是泰国巴吞他尼府的城市,被视为首都曼谷在北方的卫星城。兰实也是泰国多个旅游地点所在交通线的枢纽城市
  • 亚彭岛亚彭岛是印度尼西亚的岛屿,位于西新畿内亚斯考滕群岛以南的极乐岛湾,西面是努姆岛,东南面是安拜群岛,西南面是库兰群岛,岛上最高点海拔高度1,496米。由亚彭群岛县负责管理,岛上主
  • 2019冠状病毒病马来西亚病例简表本条目列出2019冠状病毒病在马来西亚确诊的病例简表。该简表为确诊摘要,病例详细内容请参见确诊/痊愈时间表。注:以下数据截至3月12日,其后之数据因卫生部无提供详细数据而不予
  • 福井俊彦福井俊彦(1935年9月7日-),日本经济学家、银行家。一般财团法人佳能全球战略研究所理事长。历任日本银行副总裁、株式会社富士通总研理事长、社团法人经济同友会副代表干事、第29