双蛋问题

✍ dations ◷ 2025-06-08 09:34:47 #物理学专题,物理科学,物理学实验

双蛋问题(The Two Eggs Problem)是一个经典的算法问题,它经常被描述为“给你两个相同的异常坚硬的鸡蛋,通过在一栋100层的楼的不同层扔下鸡蛋进行实验,试验出可以摔碎该鸡蛋的最高楼层(临界楼层)。已知未碎的鸡蛋可以重复使用。求最少的实验次数n,使得在n次实验后,一定能判断出该临界楼层。”

该问题可以扩展为这样一类问题: 在N个鸡蛋,k层楼的条件下,找到一个最小的m,使得存在一种方案,在m次实验以后,一定能找到鸡蛋的临界楼层。

为了更加精确地思考问题,该问题中必须满足以下的条件:

此时,你有2个鸡蛋,楼高100层。我们可以先思考有1个鸡蛋和有无数个鸡蛋的情况。

此时,由于只有一个鸡蛋,所以一旦破碎,那么就无法继续进行试验,我们只能从第1层开始,一层一层地实验。在这种情况下最多需要99次实验。

容易的解决方案是二分法, log 2 100 6.644 < 7 {\displaystyle \log _{2}{100}\approx 6.644<7} ,所以如果我们有无数个鸡蛋,我们最多只需要7次就可以试验出。比如,先在64楼扔一次鸡蛋,如果碎了,那就到32层扔第二次,如果第二次扔鸡蛋又碎了,再到16层去扔第三次,如果这次没有碎,那你可以再到第24层去扔第四次,又没碎,那就去28层扔第五次,还是没有碎,再到30层扔第六次,这次又碎了,再到29层扔第七次,第七次碎了,那么临界楼层就是第28层,第七次没碎,临界楼层就是第29层。所以无数个鸡蛋最多只需要7次就可以实验。

借助于二分法提供的分组思想,我们可以尝试将100平均分成10组,用第一个鸡蛋在每组最后一层进行实验,这样可以实验出临界楼层在哪一组。然后再用第二个鸡蛋从该组第一层依次实验。这种方案的最坏情况是19次。

我们发现,如果19层是临界楼层,只需要实验11次,而如果临界层是99层,就需要实验19次。因此我们是否可以将19次平均到11次里一部分?为此,有以下方案,第一组 x {\displaystyle x} 人,第二组 ( x 1 ) {\displaystyle (x-1)} 人,第三组 ( x 2 ) {\displaystyle (x-2)} 人,……第x组1人,考虑到 x + ( x 1 ) + ( x 2 ) + + 3 + 2 + 1 = x ( x + 1 ) 2 > 100 {\displaystyle x+(x-1)+(x-2)+\cdots +3+2+1={\frac {x(x+1)}{2}}>100} ,解得 x > 13.65 {\displaystyle x>13.65} ,所以 x = 14 {\displaystyle x=14} 时,最多需要14次便可以找出临界楼层。

下面是双蛋问题的几个推广问题。

类似于之前的方法,只需要 x + ( x 1 ) + ( x 2 ) + + 3 + 2 + 1 = x ( x + 1 ) 2 > k {\displaystyle x+(x-1)+(x-2)+\cdots +3+2+1={\frac {x(x+1)}{2}}>k} 即可,可以求出 k = 1 + 1 + 8 k 2 {\displaystyle k=\left\lceil {\frac {-1+{\sqrt {1+8k}}}{2}}\right\rceil } (参见取整函数、高斯符号)

让我们定义一个函数 f ( d , n ) {\displaystyle f(d,n)} ,表示有 n {\displaystyle n} 个鸡蛋,通过 d {\displaystyle d} 次实验就一定能够判断出临界楼层的最大楼层。 如果鸡蛋打破,我们将能够将临界楼层范围缩小到f(d−1,n−1)层;否则我们将能够把范围缩小到 f(d-1,n)层。

因此, f ( d , n ) = 1 + f ( d 1 , n 1 ) + f ( d 1 , n ) {\displaystyle f(d,n)=1+f(d-1,n-1)+f(d-1,n)} 。这只是一个递归关系,而我们必须找到一个函数 f(d,n)。

因此,我们将定义一个辅助函数 g ( d , n ) : g ( d , n ) = f ( d , n + 1 ) f ( d , n ) {\displaystyle g(d,n):g(d,n)=f(d,n+1)-f(d,n)}

根据我们的第一个方程

g ( d , n ) = f ( d , n + 1 ) f ( d , n ) = f ( d 1 , n + 1 ) + f ( d 1 , n ) + 1 f ( d 1 , n ) f ( d 1 , n 1 ) 1 = + = g ( d 1 , n ) + g ( d 1 , n 1 ) {\displaystyle {\begin{aligned}g(d,n)&=f(d,n+1)-f(d,n)\\&=f(d-1,n+1)+f(d-1,n)+1-f(d-1,n)-f(d-1,n-1)-1\\&=+\\&=g(d-1,n)+g(d-1,n-1)\end{aligned}}} 函数 g ( d , n ) {\displaystyle g(d,n)} 可以写成 g ( d , n ) = ( d n ) {\displaystyle g(d,n)={\binom {d}{n}}} (参见二项式系数)

但是我们有一个问题:根据之前的关系 f {\displaystyle f} g {\displaystyle g} ,对于任何 n {\displaystyle n} f ( 0 , n ) {\displaystyle f(0,n)} 以及 g ( 0 , n ) {\displaystyle g(0,n)} 都是 0 {\displaystyle 0} 。然而,在 n = 0 {\displaystyle n=0} 时会发生矛盾,因为 g ( 0 , 0 ) = ( 0 0 ) = 1 {\displaystyle g(0,0)={\binom {0}{0}}=1} ,但对于每一个 n {\displaystyle n} g ( 0 , n ) {\displaystyle g(0,n)} 应该是 0 {\displaystyle 0} !

我们可以通过重定义 g ( d , n ) {\displaystyle g(d,n)} 修复这个问题如下:

g ( d , n ) = ( d n + 1 ) {\displaystyle g(d,n)={\binom {d}{n+1}}}

递归是仍然有效。

现在,展开f(d,n),我们可以把它写成

f ( d , n ) = + + + + f ( d , 0 ) . {\displaystyle {\begin{aligned}f(d,n)=&\\+&\\+&\cdots \\+&\\+&f(d,0).\end{aligned}}}

我们知道 f ( d , 0 ) = 0 {\displaystyle f(d,0)=0} ,因此

f ( d , n ) = g ( d , n 1 ) + g ( d , n 2 ) + + g ( d , 0 ) {\displaystyle f(d,n)=g(d,n-1)+g(d,n-2)+\cdots +g(d,0)}

我们也知道

g ( d , n ) = ( d n + 1 ) {\displaystyle g(d,n)={\binom {d}{n+1}}}


因此,

g ( d , n 1 ) + g ( d , n 2 ) + + g ( d , 0 ) = ( d n ) + ( d n 1 ) + + ( d 1 ) {\displaystyle g(d,n-1)+g(d,n-2)+\cdots +g(d,0)={\binom {d}{n}}+{\binom {d}{n-1}}+\cdots +{\binom {d}{1}}}

最后,

f ( d , n ) = i = 1 n ( d i ) {\displaystyle f(d,n)=\sum _{i=1}^{n}{\binom {d}{i}}}

我们知道 f ( d , n ) {\displaystyle f(d,n)} 是所有最少实验次数为 d {\displaystyle d} 的总楼层数中最大的一个,我们只要找到一个 k {\displaystyle k} 满足以下条件即可:

f ( d , n ) k {\displaystyle f(d,n)\geqslant k}

使用我们最后的公式,

i = 1 n ( d i ) k {\displaystyle \sum _{i=1}^{n}{\binom {d}{i}}\geqslant k}

让我们来试验一下:

f ( t , 3 ) = i = 1 3 ( d i ) = t ( t 2 + 5 ) 6 {\displaystyle f(t,3)=\sum _{i=1}^{3}{\binom {d}{i}}={\frac {t(t^{2}+5)}{6}}}

因此有 f ( 8 , 3 ) = 92 , f ( 9 , 3 ) = 129 {\displaystyle f(8,3)=92,f(9,3)=129}

所以我们如果有三个鸡蛋,可以保证在9次实验之内找到临界楼层。

除了解析法之外,最常见的方法是递归法。

想象以下情况:n个鸡蛋,k层楼,然后你把鸡蛋在连续的h层中的第i层进行试验。

如果鸡蛋打破:这个问题会减少为n-1鸡蛋和 i-1个剩余楼层的问题;如果不打破:这个问题会减少为n鸡蛋和h-i个剩余楼层的问题。现在我们可以定义一个函数 W ( n , h ) {\displaystyle W(n,h)} 计算所需的最小实验次数:

我们可以编写上述结果为确定找到下面的递归 W ( n , h ) {\displaystyle W(n,h)} :

以下代码由C++编写

W ( n , h ) = 1 + m i n ( m a x ( W ( n 1 , i 1 ) , W ( n , h i ) ) ) {\displaystyle W(n,h)=1+min(max(W(n-1,i-1),W(n,h-i)))}

#include <iostream>#include <iostream>#include <limits.h>using namespace std;//Compares 2 values and returns the bigger oneint max(int a,int b) {    int ans=(a>b)?a:b;    return ans;}//Compares 2 values and returns the smaller oneint min(int a,int b){    int ans=(a<b)?a:b;    return ans;}int egg(int n,int h){    //Basis case    if(n==1) return h;    if(h==0) return 0;    if(h==1) return 1;    int minimum=INT_MAX;    //Recursion to find egg(n,k). The loop iterates i: 1,2,3,...h    for(int x=1;x<=h;x++) minimum=min(minimum,(1+max(egg(n,h-x),egg(n-1,x-1))));    return minimum;}int main(){    int e;//Number of eggs    int f;//Number of floors    cout<<"Egg dropping puzzle\n\nNumber of eggs:";    cin>>e;    cout<<"\nNumber of floors:";    cin>>f;    cout<<"\nNumber of drops in the worst case:"<<egg(e,f);    return 0;}}

参见

  • 递归
  • 二项式系数
  • 取整函数、高斯符号


相关

  • 造假造假,可能是指:
  • 余梦伦余梦伦(1936年11月-),籍贯浙江余姚,中国航天飞行力学、火箭弹道设计专家,中国科学院院士。他在火箭弹道设计中取得多项重要成果,是中国弹道战略火箭和运载火箭弹道设计的开创者及学
  • 静止能量不变质量(invariant mass)或称内秉质量(intrinsic mass)、固有质量(proper mass),亦常简称为质量,指的是一个物体或一个物体系统由总能量和动量构成的在所有参考系下都相同的一个洛
  • 硬粒小麦硬粒小麦又名杜兰小麦(学名:Triticum durum or Triticum turgidum var. durum)为禾本科小麦属,曾经被归为圆锥小麦的亚种。基因组学研究表明:50万年前,二倍体的小麦属乌拉尔图小麦
  • 仙游话仙游话(兴化平话字:Hsing-iú-uā)是莆仙语(兴化语)的一种方言,通行于莆田的仙游县一带。仙游话一般以城关话为代表,其使用者以仙游县为中心,福州的永泰县,泉州的泉港区以及惠安北部
  • 陈 洪陈洪可以指:
  • 委内瑞拉玻利瓦尔US$1 = Bs.S. 2.4883 (公告价格)(看黑市价格) US$1 = Bs.S. 60 (石油币汇率)委内瑞拉主权玻利瓦尔(西班牙语:bolívares soberanos;货币符号:Bs.S.;ISO 4217代码:VES)是委内瑞拉自
  • 甜心战士 Universe《甜心战士 Universe》(Cutie Honey Universe)为改编自日本漫画家永井豪的作品《甜心战士》的系列动画,于2018年4月播出。与《恶魔人 Crybaby》、《剧场版 无敌铁金刚 / INFINI
  • 侠盗罗宾汉《侠盗罗宾汉》(英语:)是一套1938年的美国历险电影,以特艺七彩拍摄。导演为迈克尔·柯蒂茲和威廉·凯利(William Keighley),主要演员有埃洛·弗林、奥丽薇·夏蕙兰、巴素·罗富邦(Ba
  • GRB 080319BGRB 080319B是一个曾于牧夫座发生的伽玛射线暴,于2008年3月19日(06:12 UTC)为雨燕卫星所侦测到。它值得注意的地方,在于刷新了人类肉眼可见最远天体的纪录,其视星等最亮达5.8等,肉