双蛋问题

✍ dations ◷ 2025-07-27 01:19:08 #物理学专题,物理科学,物理学实验

双蛋问题(The Two Eggs Problem)是一个经典的算法问题,它经常被描述为“给你两个相同的异常坚硬的鸡蛋,通过在一栋100层的楼的不同层扔下鸡蛋进行实验,试验出可以摔碎该鸡蛋的最高楼层(临界楼层)。已知未碎的鸡蛋可以重复使用。求最少的实验次数n,使得在n次实验后,一定能判断出该临界楼层。”

该问题可以扩展为这样一类问题: 在N个鸡蛋,k层楼的条件下,找到一个最小的m,使得存在一种方案,在m次实验以后,一定能找到鸡蛋的临界楼层。

为了更加精确地思考问题,该问题中必须满足以下的条件:

此时,你有2个鸡蛋,楼高100层。我们可以先思考有1个鸡蛋和有无数个鸡蛋的情况。

此时,由于只有一个鸡蛋,所以一旦破碎,那么就无法继续进行试验,我们只能从第1层开始,一层一层地实验。在这种情况下最多需要99次实验。

容易的解决方案是二分法, log 2 100 6.644 < 7 {\displaystyle \log _{2}{100}\approx 6.644<7} ,所以如果我们有无数个鸡蛋,我们最多只需要7次就可以试验出。比如,先在64楼扔一次鸡蛋,如果碎了,那就到32层扔第二次,如果第二次扔鸡蛋又碎了,再到16层去扔第三次,如果这次没有碎,那你可以再到第24层去扔第四次,又没碎,那就去28层扔第五次,还是没有碎,再到30层扔第六次,这次又碎了,再到29层扔第七次,第七次碎了,那么临界楼层就是第28层,第七次没碎,临界楼层就是第29层。所以无数个鸡蛋最多只需要7次就可以实验。

借助于二分法提供的分组思想,我们可以尝试将100平均分成10组,用第一个鸡蛋在每组最后一层进行实验,这样可以实验出临界楼层在哪一组。然后再用第二个鸡蛋从该组第一层依次实验。这种方案的最坏情况是19次。

我们发现,如果19层是临界楼层,只需要实验11次,而如果临界层是99层,就需要实验19次。因此我们是否可以将19次平均到11次里一部分?为此,有以下方案,第一组 x {\displaystyle x} 人,第二组 ( x 1 ) {\displaystyle (x-1)} 人,第三组 ( x 2 ) {\displaystyle (x-2)} 人,……第x组1人,考虑到 x + ( x 1 ) + ( x 2 ) + + 3 + 2 + 1 = x ( x + 1 ) 2 > 100 {\displaystyle x+(x-1)+(x-2)+\cdots +3+2+1={\frac {x(x+1)}{2}}>100} ,解得 x > 13.65 {\displaystyle x>13.65} ,所以 x = 14 {\displaystyle x=14} 时,最多需要14次便可以找出临界楼层。

下面是双蛋问题的几个推广问题。

类似于之前的方法,只需要 x + ( x 1 ) + ( x 2 ) + + 3 + 2 + 1 = x ( x + 1 ) 2 > k {\displaystyle x+(x-1)+(x-2)+\cdots +3+2+1={\frac {x(x+1)}{2}}>k} 即可,可以求出 k = 1 + 1 + 8 k 2 {\displaystyle k=\left\lceil {\frac {-1+{\sqrt {1+8k}}}{2}}\right\rceil } (参见取整函数、高斯符号)

让我们定义一个函数 f ( d , n ) {\displaystyle f(d,n)} ,表示有 n {\displaystyle n} 个鸡蛋,通过 d {\displaystyle d} 次实验就一定能够判断出临界楼层的最大楼层。 如果鸡蛋打破,我们将能够将临界楼层范围缩小到f(d−1,n−1)层;否则我们将能够把范围缩小到 f(d-1,n)层。

因此, f ( d , n ) = 1 + f ( d 1 , n 1 ) + f ( d 1 , n ) {\displaystyle f(d,n)=1+f(d-1,n-1)+f(d-1,n)} 。这只是一个递归关系,而我们必须找到一个函数 f(d,n)。

因此,我们将定义一个辅助函数 g ( d , n ) : g ( d , n ) = f ( d , n + 1 ) f ( d , n ) {\displaystyle g(d,n):g(d,n)=f(d,n+1)-f(d,n)}

根据我们的第一个方程

g ( d , n ) = f ( d , n + 1 ) f ( d , n ) = f ( d 1 , n + 1 ) + f ( d 1 , n ) + 1 f ( d 1 , n ) f ( d 1 , n 1 ) 1 = + = g ( d 1 , n ) + g ( d 1 , n 1 ) {\displaystyle {\begin{aligned}g(d,n)&=f(d,n+1)-f(d,n)\\&=f(d-1,n+1)+f(d-1,n)+1-f(d-1,n)-f(d-1,n-1)-1\\&=+\\&=g(d-1,n)+g(d-1,n-1)\end{aligned}}} 函数 g ( d , n ) {\displaystyle g(d,n)} 可以写成 g ( d , n ) = ( d n ) {\displaystyle g(d,n)={\binom {d}{n}}} (参见二项式系数)

但是我们有一个问题:根据之前的关系 f {\displaystyle f} g {\displaystyle g} ,对于任何 n {\displaystyle n} f ( 0 , n ) {\displaystyle f(0,n)} 以及 g ( 0 , n ) {\displaystyle g(0,n)} 都是 0 {\displaystyle 0} 。然而,在 n = 0 {\displaystyle n=0} 时会发生矛盾,因为 g ( 0 , 0 ) = ( 0 0 ) = 1 {\displaystyle g(0,0)={\binom {0}{0}}=1} ,但对于每一个 n {\displaystyle n} g ( 0 , n ) {\displaystyle g(0,n)} 应该是 0 {\displaystyle 0} !

我们可以通过重定义 g ( d , n ) {\displaystyle g(d,n)} 修复这个问题如下:

g ( d , n ) = ( d n + 1 ) {\displaystyle g(d,n)={\binom {d}{n+1}}}

递归是仍然有效。

现在,展开f(d,n),我们可以把它写成

f ( d , n ) = + + + + f ( d , 0 ) . {\displaystyle {\begin{aligned}f(d,n)=&\\+&\\+&\cdots \\+&\\+&f(d,0).\end{aligned}}}

我们知道 f ( d , 0 ) = 0 {\displaystyle f(d,0)=0} ,因此

f ( d , n ) = g ( d , n 1 ) + g ( d , n 2 ) + + g ( d , 0 ) {\displaystyle f(d,n)=g(d,n-1)+g(d,n-2)+\cdots +g(d,0)}

我们也知道

g ( d , n ) = ( d n + 1 ) {\displaystyle g(d,n)={\binom {d}{n+1}}}


因此,

g ( d , n 1 ) + g ( d , n 2 ) + + g ( d , 0 ) = ( d n ) + ( d n 1 ) + + ( d 1 ) {\displaystyle g(d,n-1)+g(d,n-2)+\cdots +g(d,0)={\binom {d}{n}}+{\binom {d}{n-1}}+\cdots +{\binom {d}{1}}}

最后,

f ( d , n ) = i = 1 n ( d i ) {\displaystyle f(d,n)=\sum _{i=1}^{n}{\binom {d}{i}}}

我们知道 f ( d , n ) {\displaystyle f(d,n)} 是所有最少实验次数为 d {\displaystyle d} 的总楼层数中最大的一个,我们只要找到一个 k {\displaystyle k} 满足以下条件即可:

f ( d , n ) k {\displaystyle f(d,n)\geqslant k}

使用我们最后的公式,

i = 1 n ( d i ) k {\displaystyle \sum _{i=1}^{n}{\binom {d}{i}}\geqslant k}

让我们来试验一下:

f ( t , 3 ) = i = 1 3 ( d i ) = t ( t 2 + 5 ) 6 {\displaystyle f(t,3)=\sum _{i=1}^{3}{\binom {d}{i}}={\frac {t(t^{2}+5)}{6}}}

因此有 f ( 8 , 3 ) = 92 , f ( 9 , 3 ) = 129 {\displaystyle f(8,3)=92,f(9,3)=129}

所以我们如果有三个鸡蛋,可以保证在9次实验之内找到临界楼层。

除了解析法之外,最常见的方法是递归法。

想象以下情况:n个鸡蛋,k层楼,然后你把鸡蛋在连续的h层中的第i层进行试验。

如果鸡蛋打破:这个问题会减少为n-1鸡蛋和 i-1个剩余楼层的问题;如果不打破:这个问题会减少为n鸡蛋和h-i个剩余楼层的问题。现在我们可以定义一个函数 W ( n , h ) {\displaystyle W(n,h)} 计算所需的最小实验次数:

我们可以编写上述结果为确定找到下面的递归 W ( n , h ) {\displaystyle W(n,h)} :

以下代码由C++编写

W ( n , h ) = 1 + m i n ( m a x ( W ( n 1 , i 1 ) , W ( n , h i ) ) ) {\displaystyle W(n,h)=1+min(max(W(n-1,i-1),W(n,h-i)))}

#include <iostream>#include <iostream>#include <limits.h>using namespace std;//Compares 2 values and returns the bigger oneint max(int a,int b) {    int ans=(a>b)?a:b;    return ans;}//Compares 2 values and returns the smaller oneint min(int a,int b){    int ans=(a<b)?a:b;    return ans;}int egg(int n,int h){    //Basis case    if(n==1) return h;    if(h==0) return 0;    if(h==1) return 1;    int minimum=INT_MAX;    //Recursion to find egg(n,k). The loop iterates i: 1,2,3,...h    for(int x=1;x<=h;x++) minimum=min(minimum,(1+max(egg(n,h-x),egg(n-1,x-1))));    return minimum;}int main(){    int e;//Number of eggs    int f;//Number of floors    cout<<"Egg dropping puzzle\n\nNumber of eggs:";    cin>>e;    cout<<"\nNumber of floors:";    cin>>f;    cout<<"\nNumber of drops in the worst case:"<<egg(e,f);    return 0;}}

参见

  • 递归
  • 二项式系数
  • 取整函数、高斯符号


相关

  • 印度洋印度洋(英语:Indian Ocean),位于亚洲、非洲、大洋洲和南极洲之间,印度位在印度洋北部的中央位置,这也是印度洋名称的由来,印度洋大部分在南半球。总面积7491万平方公里,约占世界海洋
  • 以太以太(英语:Luminiferous aether、aether 或 ether)或译为光以太,是古希腊哲学家亚里士多德所设想的一种物质,为五元素之一。19世纪的物理学家,认为它是一种曾被假想的电磁波的传播
  • 印度-澳大利亚板块印度-澳洲板块(英语:Indo-Australian Plate,或印澳板块)是两块板块的合称,其中包含了澳洲大陆及周围海域,并向西北延伸,涵盖印度次大陆与附近水域。此板块可分成较大的澳洲板块与较
  • 青蛙少年青蛙少年事件(英语:Frog Boys,韩语:개구리소년),正式案件名称为城西小学生失踪事件,是指1991年3月26日,韩国大邱广域市达西区,五名小学生去抓青蛙(另一说为抓蜥蜴、山椒鱼 )时离奇失踪
  • 居鲁士您要查找的居鲁士可能是:
  • 缙云县缙云县,简称“缙”。位于中国浙江省的浙南腹地、浙中南部丘陵山区,丽水市东北部,是丽水市下辖的一个县。唐武德四年(621),永康县置丽州,并分置就缙云县,缙云县始建。唐武德八年(625),废
  • 焦磷酸焦磷酸,无色黏稠液体,久置生成结晶。由正磷酸失水而得。用水稀释可生成正磷酸。水溶液有强酸性。纯焦磷酸可由磷酸氢钠加热再将其溶解,转化成焦磷酸铅沉淀后通入硫化氢过滤,将滤
  • 古里格拉姆沙达尔乌帕齐拉古里格拉姆沙达尔乌帕齐拉(孟加拉语:কুড়িগ্রাম সদর,英语:Kurigram Sadar Upazila)是孟加拉国古里格拉姆县的一个乌帕齐拉,位于朗布尔专区的古里格拉姆县。。据1991
  • 纳斯达克以色列指数纳斯达克以色列指数(英语:NASDAQ Israel Index) 旨在追踪在美国上市,在以色列注册的公司的表现。指数是强大的指标,投资者可跟踪以色列公司在制造业、农业和高科技的广泛领域取
  • 北条秀司‘阁下’(1940年) 北条秀司(1902年11月7日-1996年5月19日)是一位日本小说家,出生于日本大阪,毕业于关西大学。本名は饭野 秀二(いいの ひでじ)。出生于大阪市。关西大学文科卒业。