泡利矩阵

✍ dations ◷ 2025-07-08 11:37:43 #李群,矩阵,量子力学

在数学和数学物理中,泡利矩阵是一组三个2×2的幺正厄米复矩阵,一般都以希腊字母σ来表示,但有时当他们在和同位旋的对称性做连结时,会被写成τ。他们在泡利表像(σ表像)可以写成:

这些矩阵是以物理学家沃尔夫冈·泡利命名的。在量子力学中,它们出现在泡利方程中描述磁场和自旋之间相互作用的一项。所有的泡利矩阵都是厄米矩阵,它们和单位矩阵I(有时候又被称为为第零号泡利矩阵0),的线性张成为2×2厄米矩阵的向量空间。

从量子力学的角度来看,埃尔米特矩阵(算符)代表可观测的物理量,因此,σ, = 0,1,2,3的线性张成代表所有作用在二维希尔伯特空间的物理量所形成的空间。从泡利本人的的研究来看,σ , =1,2,3所代表的物理量是自旋在三维欧几里得空间ℝ3中第个坐标轴的投影分量。

三个泡利矩阵可以共同用一种单一形式表达:

其中是克罗内克函数。当=时,其值为1;当≠时,其值为0。

这些矩阵是对合的:

其中是单位矩阵。

此外,泡利矩阵的行列式和它们的迹分别为:

故从上述关系可以推得每个泡利矩阵的本征值分别为±1。

每个泡利矩阵有两个本征值,+1和−1,其对应的归一化本征向量为:

泡利向量定义为:

这个定义提供了将一般向量基底对应到泡利矩阵的基底的机制

相同的下标是使用了爱因斯坦求和约定。此外:

泡利矩阵有以下的对易关系:

以及以下的反对易关系。

其中是列维-奇维塔符号,是克罗内克函数,是是2 ×2的单位矩阵。而一样的,上面使用了爱因斯坦求和约定。

将泡利矩阵的对易和反对易相加得:

因此可得:

为了避免符号重复,将, , 改成, , ,然后把上式和三维向量和内积,可得:

将它转换成向量积的表达式:

a = a n ^ {\displaystyle {\vec {a}}=a{\hat {n}}} 可得:

另外加上之前求得在 = 1的情况可在为奇数的情况:

利用矩阵指数的概念,加上正弦和余弦的泰勒级数展开式,可得:

第一项的总和为 cos a {\displaystyle \cos {a}}

利用这种表示方法,泡利矩阵的完备性关系可写作:

因为所有的泡利矩阵,和2×2的单位矩阵可做为所有2×2矩阵在希尔伯特空间中的正交基底,表示任何一个复系数矩阵皆可表示为:

其中是一复数,是一复向量中的三个系数。

利用之前给的关系式,容易证明:

"tr"表示对该矩阵取其迹,因此, c = 1 2 t r M {\displaystyle c={\frac {1}{2}}\mathrm {tr} \,M} 和,使用了爱因斯坦求和约定。而因为这关系对所有矩阵都成立,因此要证的完备性关系必然成立。

有时习惯上将2×2单位举写成0,也就是,0 = 。如此一来完备性关系可以更为简洁的表示成:

令算符为换位算符(或称为置换算符)。对于两个在张量积空间ℂ2 ⊗ ℂ2中的自旋该算符有:

的关系。这个算符可以更进一步的用泡利矩阵来表示:

该算符有两个本征值,分别1和-1,这个算符可以用于代表某些哈密顿量的相互作用项,产生对称和反对称的本征态分裂的效果。

{, 1, 2, 3}的实数张成与四元数ℍ的实代数同构,可透过下列映射得到对应关系(注意到泡利矩阵的负号):

另外一种方式的映射为将泡利矩阵的次序反转

既然单位四元数与SU(2)为群同构,此亦代表泡利矩阵也可用来描述SU(2)。从SU(2)到SO(3)的2对1同态性,也可以用泡利矩阵来表述。

四元数构成可除代数——所有非零元素皆有逆元素,然而泡利矩阵并非如此。泡利矩阵生成的代数的四元数版,参见复四元数,其共有8个实维度。

相关

  • 鞭毛鞭毛是很多单细胞生物和一些多细胞生物细胞表面像鞭子一样的细胞器,用于运动及其它一些功能。在三个域中,鞭毛的结构各不相同。细菌的鞭毛是螺旋状的纤维,像螺丝一样旋转,属于生
  • 芳香性芳香性是一种化学性质,有芳香性的分子中,由不饱和键、孤对电子和空轨道组成的共轭系统具有特别的、仅考虑共轭时无法解释的稳定作用。可以将芳香性看作是环状离域和环共振的体
  • 草酸铁离子草酸铁钾(化学式:K3),三水合物为翠绿色晶体,是一个含铁(III)的配合物,溶于水得到绿色溶液。主要用作光化剂。三个双齿的草酸根离子与铁形成八面体型配位,因此它有Λ-和Δ-两种异构
  • 热带栽培业热带栽培业(简称:热栽业),多分布于早期被欧洲国家殖民的热带国家,主要作物为咖啡、可可、油棕、橡胶、甘蔗等。此类农业须具备充足且低廉的劳工、完善的企业制度、方便的运输系统
  • 风茄毒茄参(学名:Mandragora officinarum),《圣经》中译作风茄,也叫曼德拉草,是茄科茄参属多年生草本植物。,其根部外型类似人的样子。长期用于巫术仪式,包括今天的威卡教。其根部分叉并
  • 莱西莱西(Lacey)位于美国华盛顿州瑟斯顿郡,为奥林匹亚的郊区。2010年美国人口普查时人口为42,393人。莱西有一个姐妹市:
  • 威拉德·范奥曼·蒯因威拉德·范奥曼·蒯因(英语:Willard Van Orman Quine,1908年6月25日-2000年12月25日),20世纪最有影响的美国哲学家、逻辑学家之一。出生于俄亥俄州阿克伦的富裕家庭,其父为一成功的
  • 李瑗李瑗,可以指
  • 刘崇一刘崇一(?年-1938年2月)。河北省武强县人。他为抗日战争期间阵亡的中国军方高级将领之一。("本文记述刘崇一团长牺牲是根据陈长捷回忆,“团长刘崇一,胸部腿部各中两弹,犹坐地指挥所
  • 牛田智大牛田智大(日语:牛田 智大/うしだ ともはる  ,1999年10月16日-)是日本一名钢琴家。