泡利矩阵

✍ dations ◷ 2025-04-03 17:18:33 #李群,矩阵,量子力学

在数学和数学物理中,泡利矩阵是一组三个2×2的幺正厄米复矩阵,一般都以希腊字母σ来表示,但有时当他们在和同位旋的对称性做连结时,会被写成τ。他们在泡利表像(σ表像)可以写成:

这些矩阵是以物理学家沃尔夫冈·泡利命名的。在量子力学中,它们出现在泡利方程中描述磁场和自旋之间相互作用的一项。所有的泡利矩阵都是厄米矩阵,它们和单位矩阵I(有时候又被称为为第零号泡利矩阵0),的线性张成为2×2厄米矩阵的向量空间。

从量子力学的角度来看,埃尔米特矩阵(算符)代表可观测的物理量,因此,σ, = 0,1,2,3的线性张成代表所有作用在二维希尔伯特空间的物理量所形成的空间。从泡利本人的的研究来看,σ , =1,2,3所代表的物理量是自旋在三维欧几里得空间ℝ3中第个坐标轴的投影分量。

三个泡利矩阵可以共同用一种单一形式表达:

其中是克罗内克函数。当=时,其值为1;当≠时,其值为0。

这些矩阵是对合的:

其中是单位矩阵。

此外,泡利矩阵的行列式和它们的迹分别为:

故从上述关系可以推得每个泡利矩阵的本征值分别为±1。

每个泡利矩阵有两个本征值,+1和−1,其对应的归一化本征向量为:

泡利向量定义为:

这个定义提供了将一般向量基底对应到泡利矩阵的基底的机制

相同的下标是使用了爱因斯坦求和约定。此外:

泡利矩阵有以下的对易关系:

以及以下的反对易关系。

其中是列维-奇维塔符号,是克罗内克函数,是是2 ×2的单位矩阵。而一样的,上面使用了爱因斯坦求和约定。

将泡利矩阵的对易和反对易相加得:

因此可得:

为了避免符号重复,将, , 改成, , ,然后把上式和三维向量和内积,可得:

将它转换成向量积的表达式:

a = a n ^ {\displaystyle {\vec {a}}=a{\hat {n}}} 可得:

另外加上之前求得在 = 1的情况可在为奇数的情况:

利用矩阵指数的概念,加上正弦和余弦的泰勒级数展开式,可得:

第一项的总和为 cos a {\displaystyle \cos {a}}

利用这种表示方法,泡利矩阵的完备性关系可写作:

因为所有的泡利矩阵,和2×2的单位矩阵可做为所有2×2矩阵在希尔伯特空间中的正交基底,表示任何一个复系数矩阵皆可表示为:

其中是一复数,是一复向量中的三个系数。

利用之前给的关系式,容易证明:

"tr"表示对该矩阵取其迹,因此, c = 1 2 t r M {\displaystyle c={\frac {1}{2}}\mathrm {tr} \,M} 和,使用了爱因斯坦求和约定。而因为这关系对所有矩阵都成立,因此要证的完备性关系必然成立。

有时习惯上将2×2单位举写成0,也就是,0 = 。如此一来完备性关系可以更为简洁的表示成:

令算符为换位算符(或称为置换算符)。对于两个在张量积空间ℂ2 ⊗ ℂ2中的自旋该算符有:

的关系。这个算符可以更进一步的用泡利矩阵来表示:

该算符有两个本征值,分别1和-1,这个算符可以用于代表某些哈密顿量的相互作用项,产生对称和反对称的本征态分裂的效果。

{, 1, 2, 3}的实数张成与四元数ℍ的实代数同构,可透过下列映射得到对应关系(注意到泡利矩阵的负号):

另外一种方式的映射为将泡利矩阵的次序反转

既然单位四元数与SU(2)为群同构,此亦代表泡利矩阵也可用来描述SU(2)。从SU(2)到SO(3)的2对1同态性,也可以用泡利矩阵来表述。

四元数构成可除代数——所有非零元素皆有逆元素,然而泡利矩阵并非如此。泡利矩阵生成的代数的四元数版,参见复四元数,其共有8个实维度。

相关

  • 医学术语系统命名法-临床术语SNOMED CT(Systematized Nomenclature of Medicine -- Clinical Terms,医学系统命名法-临床术语,医学术语系统命名法-临床术语),是一部经过系统组织编排的,便于计算机处理的医学术语
  • 维尔特二号维尔特二号彗星(官方标记为81P/Wild)是一颗由瑞士天文学家保罗·维尔特于1978年发现的彗星。据信在它45亿年的生命里,维尔特2号可能曾有更远和圆的轨道。1974年它在距离行星木
  • 松崎万长松崎万长(又写为日语:松ヶ崎 萬長 / まつがさき つむなが,1858年10月13日-1921年2月3日),生于日本东京都,建筑家,日本孝明天皇(明治天皇之父)侍从长哲长卿次子。他从7岁开始,就多次奉召
  • 匙,也称汤匙、匙子、勺、勺子、汤勺、调羹或匙羹,是一种餐具、量具或工具,由带有凹陷的头部和连接的柄构成。用来装液体和小块固体。一般把体积较小、用于进餐的称为“匙”或“
  • 蛋白质折叠蛋白质折叠(Protein folding)是蛋白质获得其功能性结构和构象的过程。通过这一物理过程,蛋白质从无规则卷曲折叠成特定的功能性三维结构。在从mRNA序列翻译成线性的氨基酸链时,
  • 威尔逊拱门威尔逊拱门(Wilson's Arch)是古代石拱门的现代名字。其顶部今天依然可见,位于耶路撒冷西墙的东北角。拱门由19世纪的探险家和测量师查尔斯·威廉·威尔逊确定于1864年,因而得名
  • 侯赛因·哈布雷侯赛因·哈布雷(阿拉伯语:حسين حبري‎,法语:Hissène Habré,1942年9月13日-),曾任乍得总统与总理,1982年至1990年间为乍得的独裁者。在执政期间,被人权团体指控违反人权、进
  • 张伯军张伯军(1956年12月-),男,汉族,吉林扶余人,中国国民党革命委员会成员。中华人民共和国政治人物、第十三届全国人民代表大会吉林地区代表。1978年毕业于吉林师范大学物理系。1996年6
  • 与谢野铁干与谢野 铁干(1873年2月26日-1935年3月26日),日本著名明星派抒情诗人,长期担任庆应大学教授,活跃于明治时期到昭和前期,其夫人是著名文学家与谢野晶子。
  • 八维空间在数学中, 一个实数的序列可以被理解为空间中的一个位置。当等于八时,所有这样的位置的集合被称为 八维空间。 通常这种空间被研究为一个向量空间,而没有任何距离的概念。 八