首页 >
可计算函数
✍ dations ◷ 2025-08-28 15:31:20 #可计算函数
在可计算性理论中,可计算函数(computable function)或图灵可计算函数是研究的基本对象。它们使我们直觉上的算法概念更加精确。使用可计算函数来讨论可计算性而不提及任何具体的计算模型,如图灵机或寄存器机。但是它们的定义必须提及某种特殊的计算模型。在可计算函数的精确定义之前,数学家经常使用非正式术语可有效计算的。这个术语因此可以被认同为可计算函数。尽管这些函数被叫做有效的,它们可能极其困难。可行可计算性和计算复杂性研究可有效计算的函数。依据邱奇-图灵论题,可计算函数精确的是使用给出无限数量的时间和存储空间的机器计算设备来计算的函数。等价的说,这个论题声称有算法的任何函数都是可计算的。可以使用Blum公理来在可计算函数的集合上定义抽象计算复杂性理论。在计算复杂性理论中,确定一个可计算函数的复杂性的问题叫做功能性问题。计算函数是在自然数上的有限偏函数。每个可计算函数
f
{displaystyle f}
接受固定数目个自然数作为参数;不同的函数接受不同数目的参数。因为函数是部分的,它们可以不定义在所有可能的输入选择上。如果定义了一个可计算函数,则它返回一个单一自然数作为输出(这个输出可以被解释为使用配对函数的一列数)。记号
f
(
x
1
,
…
,
x
k
)
↓
{displaystyle f(x_{1},ldots ,x_{k})downarrow }
指示偏函数
f
{displaystyle f}
被定义在参数
x
1
,
…
,
x
k
{displaystyle x_{1},ldots ,x_{k}}
上,而记号
f
(
x
1
,
…
,
x
k
)
↓=
y
{displaystyle f(x_{1},ldots ,x_{k})downarrow =y}
指示
f
{displaystyle f}
被定义在参数
x
1
,
…
,
x
k
{displaystyle x_{1},ldots ,x_{k}}
上而返回的值是
y
{displaystyle y}
。这些函数也叫做偏递归函数。在可计算理论中,函数的定义域是函数被定义在其上的所有输入的集合。定义在所有参数上的函数叫做全函数。如果可计算函数是全函数,它叫做全可计算函数或全递归函数。有很多等价方式定义可计算函数的类。为了具体,本文余下部分将假定可计算函数已经被定义可以被图灵机计算的那些偏函数。有很多计算的等价模型定义同一类可计算函数。这些计算模型包括等等。自然数的集合A被叫做可计算的(同义词:递归的,可决定的),如果有可计算函数f使得对于每个自然数n,
f
(
n
)
↓=
1
{displaystyle f(n)downarrow =1}
如果n在A中,并且
f
(
n
)
↓=
0
{displaystyle f(n)downarrow =0}
如果n不在A中。自然数的集合被叫做计算可枚举的(同义词:递归可枚举的,半可判定的),如果有可计算函数f使得对于每个自然数n,f(n)是有定义的,当且仅当n在这个集合中。所以一个集合是计算可枚举的,当且仅当它是某个可计算函数的定义域。使用词可枚举的因为对于自然数的非空子集B下列是等价的:如果集合B是函数f的值域,则这个函数可以被看作B的枚举,因为列表f(0), f(1), ...将包含B的所有元素。因为在自然数上的每个有限关系都可以被识别为对应的自然数的有限序列的集合,可计算关系和计算可枚举关系的概念可以从它们的集合类似物来定义。在计算机科学的可计算性理论中,经常考虑形式语言。它包括任意集合的一个字母表,在字母表上的字是来自字母表的符号的有限序列;同一个符号可以出现多于一次。例如,二进制字符串精确的是在字母表
{
0
,
1
}
{displaystyle {0,1}}
上的字。语言是在固定字母表上的所有字的搜集的子集。例如,精确的包含三个字母的所有二进制字符串的搜集是在二进制字母表上的一个语言。形式语言的一个关键性质是对判定一个给定字是否在这个语言中的难度级别。必须开发某种编码系统来允许可计算函数来接受在语言中的任意字作为输入;这通常是要认真处置的例程。一个语言被称为是可计算的(同义词:递归的、可判定的),如果存在一个可计算函数
f
{displaystyle f}
使得对于在字母表上的每个字w,
f
(
w
)
↓=
1
{displaystyle f(w)downarrow =1}
如果这个字在这个语言中,并且
f
(
w
)
↓=
0
{displaystyle f(w)downarrow =0}
如果这个字不在这个语言中。所以一个语言在有一个过程能正确的判定任意的字是否在这个语言中的情况下是可计算的。一个语言是计算可枚举的(同义词:递归可枚举的,半可判定的),如果有可计算函数f使得
f
(
w
)
{displaystyle f(w)}
是有定义的,当且仅当字w在这个语言中。术语可枚举同自然数的计算可枚举集合有同样的语源。如果f和g是可计算的,则:f + g, f * g,
f
∘
g
{displaystyle fcirc g}
如果
f是一元的,max(f,g), min(f,g)和更多的组合都是可计算的。
相关
- 酸奶酸奶(英语:Yogurt,又称老酸奶、优格、乳酪、酸乳、优酪乳)是乳制品的一种,由动物乳汁经乳酸菌发酵而产生。优格一词源自土耳其语的yoğurt(读音:.mw-parser-output .IPA{font-famil
- 呼肠孤病毒正呼肠孤病毒属 Orthoreovirus 环状病毒属 Orbivirus 轮状病毒 Rotavirus 科罗拉多壁虱热病毒 Coltivirus 水产呼肠孤病毒 Aquareovirus 质型多角体病毒 Cypovirus 斐济病毒
- 美墨战争美国胜利美墨战争是美国与墨西哥之间于从1846年至1848年爆发的一场战争。19世纪,美国国内流行“天定命运论”,昭昭天命成为美国19世纪时的政治标语 ,其中一层含义就是美国人是
- 大陆会议大陆会议(英语:Continental Congress),或作大陆议会,是指北美十三州在1774年至1789年间组成的联合议会,是为美国国会的前身。大陆会议与美国革命息息相关。18世纪中叶,英国与其北美
- 国家地理空间情报局机密 (1998年9000人)(2013年大约16000人)机密 (1998年15亿国家地理空间情报局(National Geospatial-Intelligence Agency (NGA))是美国政府下设的为国家安全而收集、分析并
- 心智图心智图(英语:Mind Map),又称脑图、心智地图、脑力激荡图、思维导图、灵感触发图、概念地图、或思维地图,是一种图像式思维的工具以及一种利用图像式思考辅助工具来表达思维的工具
- 烷基化烷基化是烷基由一个分子转移到另一个分子的过程。近现代产业中,在整个炼油过程中,烷基化可以将分子按照需要重组,增加产量,对油品应用是非常重要的一环。以标准的炼油过程来做说
- 运动失调共济失调(英语:Ataxia)是指缺乏规律,或者为笨拙,为一种神经疾病上的特征。失调可以广泛指在中枢神经系统、周围神经系统任何其中一环出状况所表现的病征,例如掌管运动和平衡的小脑
- The Washington Post《华盛顿邮报》(英语:The Washington Post)是美国华盛顿哥伦比亚特区具影响力与发行量大的报纸之一,共获得47座普利策奖,其中 2008 年获得独立的 6 项普利策奖,仅次于《纽约时报》
- 根霉菌根霉属(学名:Rhizopus)真菌主要外观特征为具有假根(rhizoid)及匍匐菌丝(stolon)。孢子囊柄(sporangiophore)以单支或数支成束的方式自匍匐菌丝长出,孢子囊柄基部往往与假根基部相对。