掠食者—猎物方程

✍ dations ◷ 2025-11-23 21:00:28 #掠食者—猎物方程
洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。以下将式子乘开,如此可以较容易地解释方程式的实际意义。第一式所表达的是猎物族群的增值速度:此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 αx 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 βxy 表现。如果 x 或 y 其中一个为零,则皆有可能是没有捕食行为出现。由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。第二式所表达的是掠食者族群的增值速度:此方程式中的 δxy 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) γy 表示掠食者的自然死亡,为指数衰减。由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。求解上述方程式的 x 与 y 可得:以及由此可知有两组解。第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。不动点的稳定性可以利用偏导数,将其以线性化方式呈现。产生的掠食者猎物模型之雅可比矩阵如下:当数值为(0,0)稳定状态,则雅可比矩阵变成:此矩阵的特征值为:模型中的 α 与 γ 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。在第二不动点求 J 值可得:此矩阵的特征值为:当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。d r d t = 2 ∗ r ( t ) − α ∗ r ( t ) ∗ f ( t ) 1 + s ∗ r ( t ) {displaystyle {frac {dr}{dt}}=2*r(t)-{frac {alpha *r(t)*f(t)}{1+s*r(t)}}} ;d f d t = − f ( t ) + α ∗ r ( t ) ∗ f ( t ) 1 + s ∗ r ( t ) {displaystyle {frac {df}{dt}}=-f(t)+{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。

相关

  • 放射性放射性或辐射性是指某元素的放射性同位素从不稳定的原子核自发地放出射线(如α射线、β射线、γ射线等)而衰变形成另一种同位素(衰变产物),这种现象称为放射性。衰变时放出的能量
  • 安德鲁·泰勒·斯提耳安德鲁·泰勒·斯提耳(英语:Andrew Taylor Still,1828年8月6日-1917年12月12日),生于美国维吉尼亚州李县,为一名外科医生,被认为是整骨疗法之父。他建立了世界第一间整骨疗法的学校,A
  • 对苯二酚对苯二酚(化学式:C6H4(OH)2),也称氢醌(英文:hydroquinone),是苯的两个对位氢被羟基取代形成的化合物。对苯二酚是白色针状结晶,可燃,可溶于热水、乙醚和乙醇,微溶于苯。具还原性,经温和
  • 牙菌斑牙菌斑是在牙齿表面逐渐沉积的生物薄膜,薄的牙菌斑颜色通常是透明无色,但变厚时会呈现黄色或棕黄色,如果使用牙菌斑显示剂可以很容易看到牙菌斑在口腔内的分布。牙菌斑由食物残
  • 卢格杜努姆卢格杜努姆(拉丁语:Lugdunum)是一个高卢城市,即现今的法国里昂。卢格杜努姆于公元前43年由卢修斯·穆那特斯·普兰古斯(英语:Lucius Munatius Plancus)作为古罗马殖民地而建。公元
  • 国家社会主义国家社会主义(德语:Nationaler Sozialismus;英语:National Socialism,又译民族社会主义)起源于十九世纪末叶的欧洲(1890年代),是主要在二十世纪上半叶于德国境内流行的政治思潮与运动
  • 1931年威斯敏斯特法令威斯敏斯特法令是英国国会在1931年通过的法案,赋英国各自治领更大自治权。此法案中订明:一旦接受威斯敏斯特法令,自治领实际上相当于独立国家,能够自行外交、国防权利。但当时的
  • 乳类本列表列出各国和地区年人均乳类消费量,数据年份为2007年:
  • 阿拉斯加暖流阿拉斯加洋流是一股沿着美国阿拉斯加州海岸往北的太平洋温暖暖流,由北太平洋洋流因为北美洲海岸线的关系而被分出来。阿拉斯加洋流是一种表面流,是西风漂流的一股,在阿拉斯加湾
  • 妇女权益促进发展基金会妇女权益促进发展基金会(英语:Foundation of Women’s Rights Promotion and Development,简称妇权基金会,英文缩写FWRPD),由中华民国行政院各部会首长、学者专家及民间团体代表组