首页 >
掠食者—猎物方程
✍ dations ◷ 2025-11-20 12:00:11 #掠食者—猎物方程
洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。以下将式子乘开,如此可以较容易地解释方程式的实际意义。第一式所表达的是猎物族群的增值速度:此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 αx 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 βxy 表现。如果 x 或 y 其中一个为零,则皆有可能是没有捕食行为出现。由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。第二式所表达的是掠食者族群的增值速度:此方程式中的 δxy 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) γy 表示掠食者的自然死亡,为指数衰减。由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。求解上述方程式的 x 与 y 可得:以及由此可知有两组解。第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。不动点的稳定性可以利用偏导数,将其以线性化方式呈现。产生的掠食者猎物模型之雅可比矩阵如下:当数值为(0,0)稳定状态,则雅可比矩阵变成:此矩阵的特征值为:模型中的 α 与 γ 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。在第二不动点求 J 值可得:此矩阵的特征值为:当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。d
r
d
t
=
2
∗
r
(
t
)
−
α
∗
r
(
t
)
∗
f
(
t
)
1
+
s
∗
r
(
t
)
{displaystyle {frac {dr}{dt}}=2*r(t)-{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}
;d
f
d
t
=
−
f
(
t
)
+
α
∗
r
(
t
)
∗
f
(
t
)
1
+
s
∗
r
(
t
)
{displaystyle {frac {df}{dt}}=-f(t)+{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。
相关
- 臭气气味是人类嗅觉系统对散布于空气中的某些特定分子的感应。人们把使人愉快的气味称为香味,把使人不快的气味称为臭味。人类大概能识别1000种不同的气味。气味分子进入鼻孔后,会
- 磷酸丙糖异构酶磷酸丙糖异构酶(Triose-phosphate isomerase,通常简称为TPI或TIM)是一种酶,能够催化二羟丙酮磷酸和D型甘油醛-3-磷酸,这两种丙糖磷酸异构体之间的可逆转换。磷酸丙糖异构酶在糖酵
- 甲基戊烯二酰辅酶A水合酶甲基戊烯二酰辅酶A水合酶(英语:Methylglutaconyl-CoA hydratase)是一种将水加成到3-甲基戊烯二酸(英语:3-Methylglutaconic acid)的双键上的酶,使其转化为羟甲基戊二酸单酰辅酶A。E
- 费耶特县费耶特县(英语:Fayette County, Georgia)是美国乔治亚州西北部的一个县。面积516平方公里。根据美国人口调查局2000年统计,费耶特县人口共有91,263人,其中白人占83.87%、非裔美国
- 芒什省芒什省(法语:Manche)是法国下诺曼底大区所辖的省份,滨大西洋。该省编号为50。2014年统计人口约50万。5个海外省及大区
- 神诞神诞是指神佛的生日,也包括神佛的显灵日、得道日之类的日子。日本把这些日子称为缘日,是与神佛有缘之日,如神佛的诞生、显灵、誓愿等选定有缘的日子,亦是进行祭祀及奉养的日。信
- 刘易斯·坎特利刘易斯·C·坎特利(英语:Lewis C. Cantley,1949年2月20日 - ),美国细胞生物学家、生物化学家,哈佛医学院系统生物学和医学部教授,并在波士顿贝斯·以色列医疗中心癌症研究主任。他
- 业业(梵语:कर्मन्,转写:karma,巴利语:kamma,音译羯磨或羯摩),印度宗教一个普遍的观念。印度传统宗教包括印度教、锡克教、佛教、耆那教都有业力的观念,业力是组成有情因果关系、因
- 新王国第八第十新王国时期是古埃及的一个时期,起于公元前16世纪至前11世纪,涵盖了第十八王朝、第十九王朝及第二十王朝。在新王国时期的埃及对外扩张势力,但人民的精力却为战事所消耗
- 贝希特斯加登贝希特斯加登(Berchtesgaden)位于德国巴伐利亚州东南部的阿尔卑斯山脚下,距离奥地利萨尔茨堡20千米,人口约8千。贝希特斯加登于1978年建立了国家公园,其中包括湖水清澈翠绿的国王
