首页 >
掠食者—猎物方程
✍ dations ◷ 2025-04-04 11:25:26 #掠食者—猎物方程
洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。以下将式子乘开,如此可以较容易地解释方程式的实际意义。第一式所表达的是猎物族群的增值速度:此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 αx 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 βxy 表现。如果 x 或 y 其中一个为零,则皆有可能是没有捕食行为出现。由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。第二式所表达的是掠食者族群的增值速度:此方程式中的 δxy 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) γy 表示掠食者的自然死亡,为指数衰减。由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。求解上述方程式的 x 与 y 可得:以及由此可知有两组解。第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。不动点的稳定性可以利用偏导数,将其以线性化方式呈现。产生的掠食者猎物模型之雅可比矩阵如下:当数值为(0,0)稳定状态,则雅可比矩阵变成:此矩阵的特征值为:模型中的 α 与 γ 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。在第二不动点求 J 值可得:此矩阵的特征值为:当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。d
r
d
t
=
2
∗
r
(
t
)
−
α
∗
r
(
t
)
∗
f
(
t
)
1
+
s
∗
r
(
t
)
{displaystyle {frac {dr}{dt}}=2*r(t)-{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}
;d
f
d
t
=
−
f
(
t
)
+
α
∗
r
(
t
)
∗
f
(
t
)
1
+
s
∗
r
(
t
)
{displaystyle {frac {df}{dt}}=-f(t)+{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。
相关
- 大豆油大豆油(英语:Soybean oil)又称豆油、常见者多为大豆色拉油 ,是从大豆中提取的植物油脂,日常食用油。常用的提取的方法有两种:压榨法和浸提法,有时二者兼用。大豆提取豆油之后的下脚
- B02A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码B02(抗出血药)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collaborat
- 哺乳动物听小骨进化哺乳动物的听小骨进化过程被认为是生物进化过程中最完备 也是最重要的事件之一。这个进化事件的过程展现了大量的演变过程,并成为预适应和已有结构再作用的最佳范例。在爬行
- 石墨石墨(Graphite),又称黑铅(Black Lead),是碳的一种同素异形体(碳的其他同素异形体有很多,为人熟悉的例如钻石)。作为最软的矿物之一,石墨不透明且触感油腻,颜色由铁黑到钢铁灰不等,形状可
- 让·雷诺阿让·雷诺阿(法语:Jean Renoir,1894年9月15日-1979年2月12日)是一位法国著名电影导演,印象派画家皮埃尔-奥古斯特·雷诺阿的次子,法国电影自然主义的代表人物。他于1945年凭《南方人
- 林峯正林峯正(1965年-),台湾律师、公众人物,是前中国国民党籍立法委员林时机之子,现任不当党产处理委员会主任委员,曾任国家安全会议咨询委员,为首位进入中央政府部会任职的时代力量党员。
- 机身机身(英语:fuselage)一般为飞机、直升机等飞行器的主体,用以装载人员、货物、武器和设备等的部分。机身与机翼(如前翼、主翼和尾翼)等部件相连。在一些飞机上,发动机及起落架等部件
- 古里·马尔丘克古里·伊万诺维奇·马尔丘克(俄语:Гурий Иванович Марчук,1925年6月8日-2013年3月24日),前苏联及俄罗斯科学家,研究领域涵盖数学、计算机、大气物理学。1968年,
- 恋医学恋医学癖(英语:Medical fetishism)是一种恋物癖形式,对涉及医疗或临床的相关物体、行为、场所或情境产生恋物癖。这包括在性角色扮演中扮演与医疗相关的人士,例如各科医师、护理
- 酦酵豆酱豆酱是一种发酵食品(英语:Fermentation in food processing),它一般是用磨碎的大豆制成的,是原产于东亚和东南亚的美食之一。各种类型的豆酱(所有这些都是基于大豆和谷物)包括: