首页 >
掠食者—猎物方程
✍ dations ◷ 2025-07-06 09:56:06 #掠食者—猎物方程
洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。以下将式子乘开,如此可以较容易地解释方程式的实际意义。第一式所表达的是猎物族群的增值速度:此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 αx 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 βxy 表现。如果 x 或 y 其中一个为零,则皆有可能是没有捕食行为出现。由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。第二式所表达的是掠食者族群的增值速度:此方程式中的 δxy 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) γy 表示掠食者的自然死亡,为指数衰减。由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。求解上述方程式的 x 与 y 可得:以及由此可知有两组解。第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。不动点的稳定性可以利用偏导数,将其以线性化方式呈现。产生的掠食者猎物模型之雅可比矩阵如下:当数值为(0,0)稳定状态,则雅可比矩阵变成:此矩阵的特征值为:模型中的 α 与 γ 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。在第二不动点求 J 值可得:此矩阵的特征值为:当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。d
r
d
t
=
2
∗
r
(
t
)
−
α
∗
r
(
t
)
∗
f
(
t
)
1
+
s
∗
r
(
t
)
{displaystyle {frac {dr}{dt}}=2*r(t)-{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}
;d
f
d
t
=
−
f
(
t
)
+
α
∗
r
(
t
)
∗
f
(
t
)
1
+
s
∗
r
(
t
)
{displaystyle {frac {df}{dt}}=-f(t)+{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。
相关
- 尿路感染泌尿道感染(urinary tract infection,UTI),也称为急性膀胱炎或膀胱感染,是一种会影响到部分泌尿道的感染。泌尿道分为上、下泌尿道,感染部位不同对应到不同疾病名称:当影响到下泌尿
- 臭氧层臭氧层是指大气层的平流层中臭氧浓度相对较高的部分,主要作用是吸收短波紫外线。臭氧层密度低,如果它被压缩到对流层的密度,则只有数毫米厚。大气层的臭氧的形成主要是因氧气分
- 桥粒桥粒(英语:desmosome,亦称为胞桥小体、细胞膜吸著部或桥体)是一种相邻细胞之间连接的结构。根据桥粒连接形态,可分为点状桥粒、带状桥粒和半桥粒。桥粒是细胞连接的一种。桥粒有
- 硫气孔火山喷气孔(英语:fumarole)是一种地壳裂缝,通常出现于火山附近。火山喷气孔会喷发蒸气及各种气体,如二氧化硫、盐酸和硫化氢,其中喷发硫化物质的,则被称为硫气孔。火山喷气孔会由许
- 皮埃尔·保罗·帕索里尼皮埃尔·保罗·帕索里尼(Pier Paolo Pasolini,1922年3月5日-1975年11月2日),意大利作家、诗人、后新现实主义时代导演。他的父亲是一名狂热的法西斯军官,母亲是一位墨索里尼的反对
- 雅虎地图Yahoo! Maps是一个免费的在线地图网站,由Yahoo!提供。已经于2015年6月15日停止服务。主网站Yahoo! Maps针对美国和加拿大提供了街景地图和行车导航功能,同时还具备下列主要功
- 寻常海绵纲见内文寻常海绵纲(学名:Demospongiae)是多孔动物门中最大的一纲,全世界大约有7000种以上;多数海产,仅少部分属于淡水种,大约150种;有些种类体型可以长到2米长。都是群体;呈块状。有
- 加元加拿大元(英语:Canadian dollar,法语:Dollar Canadien,ISO 4217货币码:CAD),又称加元或加币,是加拿大的法定货币,自1858年起使用,通常以$、C$、Can$或加元等简称。1加元相等于100加拿大
- 失败国家指数脆弱国家指数(FSI,Fragile States Index,前身为失败国家指数)是根据和平基金会统计及列出的排名,在2018年共有178个评估对象国。一个失败国家有几个表现。常见的指标包括一个国家
- 亚洲新湾区亚洲新湾区(英语译名:Asia New Bay Area)是台湾高雄市的新兴中心商业区,位于高雄多功能经贸园区的核心区。亚洲新湾区是高雄产业转型最重大的建设,现在朝着港市合作方向进行,目标