首页 >
掠食者—猎物方程
✍ dations ◷ 2025-11-25 09:08:55 #掠食者—猎物方程
洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。以下将式子乘开,如此可以较容易地解释方程式的实际意义。第一式所表达的是猎物族群的增值速度:此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 αx 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 βxy 表现。如果 x 或 y 其中一个为零,则皆有可能是没有捕食行为出现。由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。第二式所表达的是掠食者族群的增值速度:此方程式中的 δxy 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) γy 表示掠食者的自然死亡,为指数衰减。由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。求解上述方程式的 x 与 y 可得:以及由此可知有两组解。第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。不动点的稳定性可以利用偏导数,将其以线性化方式呈现。产生的掠食者猎物模型之雅可比矩阵如下:当数值为(0,0)稳定状态,则雅可比矩阵变成:此矩阵的特征值为:模型中的 α 与 γ 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。在第二不动点求 J 值可得:此矩阵的特征值为:当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。d
r
d
t
=
2
∗
r
(
t
)
−
α
∗
r
(
t
)
∗
f
(
t
)
1
+
s
∗
r
(
t
)
{displaystyle {frac {dr}{dt}}=2*r(t)-{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}
;d
f
d
t
=
−
f
(
t
)
+
α
∗
r
(
t
)
∗
f
(
t
)
1
+
s
∗
r
(
t
)
{displaystyle {frac {df}{dt}}=-f(t)+{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。
相关
- 小儿麻痹症脊髓灰质炎(英语:poliomyelitis,简称polio),俗称小儿麻痹症(中文名称译自日语“小児麻痺”;后者则译自英语infantile paralysis),又译急性灰白髓炎。是由脊髓灰质炎病毒引起,可感染人
- 美国政府作品版权依据美国版权法规定,美国政府作品是指政府官员或雇员职务上所创作的作品。此处所定义的政府作品仅及于美国联邦政府,不包括各州及地方政府。依据版权法第105节,美国政府作品不
- 拉格朗日拉格朗日力学(英语:Lagrangian mechanics)是分析力学中的一种,于1788年由约瑟夫·拉格朗日所创立。拉格朗日力学是对经典力学的一种的新的理论表述,着重于数学解析的方法,并运用最
- THz赫兹(符号:Hz)是频率的国际单位制单位,表示每一秒周期性事件发生的次数。赫兹是以首个用实验验证电磁波存在的科学家海因里希·赫兹命名,常用于描述正弦波、乐音、无线电通讯以及
- 曹天钦曹天钦(1920年12月5日-1995年1月8日),生于北平,籍贯河北束鹿,中国生物化学家,中国科学院院士。他是中国现代蛋白质研究的奠基人之一,肌球蛋白轻链的发现者。祖籍河北束鹿,1920年出生
- 大陆法系民法法系(civil law),亦称欧陆法系、大陆法系、法典法系、市民法系(civilian law)、罗马法系(Roman law)、罗马日耳曼法系,是受罗马法影响而成立的法律系统,与普通法系并列为当今世界
- 姬蜚蠊科见内文姬蜚蠊科(学名:Ectobiidae),又名斜翅蜚蠊科,是蜚蠊目匍蜚蠊总科之下两个科之一,可分为四个亚科,领223属2381种,属于该科的蜚蠊体型均较小。其下较著名的种包括德国姬蠊、亚洲
- 情夫情夫是已婚女性的男性婚外情人,尤其指被亿万富婆包养的一类,中国古代称面首,又俗称小白脸,主人翁,牛郎, 现在又有二公、二爷、小王的俗称(相当于情妇被称为“二奶”或当今俗称的“
- 中等强国中等强国(英语:Middle power)是一个于国际关系中使用的一个词。中等强国是用来描述一些并非超级大国或列强,但在国际上有一定影响力的国家。国际社会仍未对中等强国的定义有共识
- 红细胞比容血细胞比容(德语:Hämatokrit,英语:hematocrit 源于希腊语:αιματοκρίτης,简写 HCT / Ht)又称血比容、红血球容积比、血容比,旧名红细胞压积(packed cell volume,简写PCV)指
