掠食者—猎物方程

✍ dations ◷ 2025-11-28 02:03:30 #掠食者—猎物方程
洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。以下将式子乘开,如此可以较容易地解释方程式的实际意义。第一式所表达的是猎物族群的增值速度:此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 αx 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 βxy 表现。如果 x 或 y 其中一个为零,则皆有可能是没有捕食行为出现。由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。第二式所表达的是掠食者族群的增值速度:此方程式中的 δxy 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) γy 表示掠食者的自然死亡,为指数衰减。由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。求解上述方程式的 x 与 y 可得:以及由此可知有两组解。第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。不动点的稳定性可以利用偏导数,将其以线性化方式呈现。产生的掠食者猎物模型之雅可比矩阵如下:当数值为(0,0)稳定状态,则雅可比矩阵变成:此矩阵的特征值为:模型中的 α 与 γ 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。在第二不动点求 J 值可得:此矩阵的特征值为:当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。d r d t = 2 ∗ r ( t ) − α ∗ r ( t ) ∗ f ( t ) 1 + s ∗ r ( t ) {displaystyle {frac {dr}{dt}}=2*r(t)-{frac {alpha *r(t)*f(t)}{1+s*r(t)}}} ;d f d t = − f ( t ) + α ∗ r ( t ) ∗ f ( t ) 1 + s ∗ r ( t ) {displaystyle {frac {df}{dt}}=-f(t)+{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。

相关

  • NP核蛋白是指与核酸(脱氧核糖核酸,DNA或者核糖核酸,RNA)有关的任何蛋白质。譬如,组织蛋白类型的蛋白-染色质。端粒酶,核糖核蛋白和精蛋白都是核蛋白。典型的核蛋白包括核糖体,核小体和
  • 雄烯二酮雄烯二酮(英语:Androstenedione,或称为4-雄烯二酮 4-androstenedione、雄-4-烯-3,17-二酮 androst-4-ene-3,17-dione,缩写A4、AED、'Δ4-dione)是一种19碳的甾体激素,其由肾上腺和
  • 高卢人高卢人(拉丁语:Gallia)指的是在铁器时代和罗马高卢时期时聚居于高卢地区的凯尔特人,年代在公元前5世纪到公元3世纪之间。他们的语言高卢语是大陆凯尔特语支的主要组成部分。前5
  • 国家利益山东问题是指第一次世界大战期间,日本借口对德国宣战,出兵中国山东,而产生的领土主权争议。在战后的巴黎和会上,中华民国作为一战的战胜国,却被日本政府要求把战败国德国在山东的
  • 恩斯特理查德·恩斯特(德语:Richard Robert Ernst,1933年8月14日-),瑞士物理化学家,1991年沃尔夫化学奖、诺贝尔化学奖得主。1901年:范托夫 | 1902年:费歇尔 | 1903年:阿伦尼乌斯 | 1904年:拉
  • 马佐平马佐平(Tso-Ping Ma,1945年11月-),美籍华裔微纳电子学家,出生于甘肃兰州,籍贯浙江东阳,耶鲁大学Raymond John Wean讲席教授、中华民国中央研究院院士、中国科学院外籍院士。马佐平出
  • 近似近似或是逼近是指一个事物和另一事物类似,但不是完全相同。近似可以用在许多性质上(量、数值、影像或说明),是指几乎一様,但没有完全一様的情形。近似最常用在数字上,也常用在数学
  • 万里区坐标:25°10′52″N 121°41′19″E / 25.181234°N 121.688687°E / 25.181234; 121.688687万里区(官方英译为Wanli,在平埔族巴赛语中称为Masu)是中华民国新北市的一个市辖区,位
  • span class=nowrapCeClsub3/sub/span三氯化铈,别名氯化铈、氯化铈(III),化学式CeCl3。无色易潮解块状结晶或粉末。露置于潮湿空气中时,迅速吸收水分生成组成不定的水合物。易溶于水,可溶于乙醇和丙酮。水合物直接在
  • 纱布纱布泛指所有纱线编织而成,呈透明、薄及疏松的布料。可用作制衣,另外也可以作为过滤用。医学用的消毒医用纱布(英语:Gauze sponge)可覆盖在伤口上的绵花,用作稳固绵花之用,加强止血