首页 >
掠食者—猎物方程
✍ dations ◷ 2025-11-10 22:32:38 #掠食者—猎物方程
洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。以下将式子乘开,如此可以较容易地解释方程式的实际意义。第一式所表达的是猎物族群的增值速度:此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 αx 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 βxy 表现。如果 x 或 y 其中一个为零,则皆有可能是没有捕食行为出现。由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。第二式所表达的是掠食者族群的增值速度:此方程式中的 δxy 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) γy 表示掠食者的自然死亡,为指数衰减。由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。求解上述方程式的 x 与 y 可得:以及由此可知有两组解。第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。不动点的稳定性可以利用偏导数,将其以线性化方式呈现。产生的掠食者猎物模型之雅可比矩阵如下:当数值为(0,0)稳定状态,则雅可比矩阵变成:此矩阵的特征值为:模型中的 α 与 γ 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。在第二不动点求 J 值可得:此矩阵的特征值为:当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。d
r
d
t
=
2
∗
r
(
t
)
−
α
∗
r
(
t
)
∗
f
(
t
)
1
+
s
∗
r
(
t
)
{displaystyle {frac {dr}{dt}}=2*r(t)-{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}
;d
f
d
t
=
−
f
(
t
)
+
α
∗
r
(
t
)
∗
f
(
t
)
1
+
s
∗
r
(
t
)
{displaystyle {frac {df}{dt}}=-f(t)+{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。
相关
- 肥胖症肥胖症(Obesity)是指体脂肪累积过多而对健康造成负面影响的身体状态,可能导致寿命减短及各种健康问题:9。肥胖的标准常使用身体质量指数(BMI)来衡量,即以体重(公斤)除以身高(米)的平方
- 石炭纪石炭纪(英语:Carboniferous,符号C)是地球历史中的一个地质时代。早在1822年石炭纪在英国就已经被看作是一个地质时代中的纪了。石炭纪的名字来自于石炭纪时期在全世界各地形成的
- 英属维尔京群岛英属维尔京群岛(英语:British Virgin Islands,缩写:BVI),或"英属维京群岛",又译“英属处女群岛”,是英国海外领土,位于加勒比海地区,处于波多黎各以东。英属维尔京群岛与邻近的美属维
- 外用软膏外用药物(英语:Topical medication),是医疗上使用于身体表面的药物,例如涂抹于皮肤或黏膜的表面,像是阴道,阴茎,眼睛和耳朵等。外用药物通常要避免接触口部,也不可进食。医疗用的化学
- 字字可以指:
- 铁圈铁圈又称铁环在实验室中用于安装在铁架台上来支撑烧瓶或烧杯等仪器。有的铁圈包括了一个夹子,用以连接铁架台,若铁圈自身不含夹子,则需要使用十字夹作为连接工具。
- 霉草科参见正文霉草科共包括8属约48种,广泛分布在全球热带和亚热带区域,包括东南亚、中南美洲、非洲、马达加斯加岛北部和澳大利亚东北,中国只有喜荫草属(Sciaphila)1属3种,分布在海南和
- 真蕨类真蕨纲(Polypodiopsida),又称为链束植物(Monilophytes)是植物界中真叶植物下的两个演化支之一,是种子植物的姊妹群。真蕨纲比起较原始的石松门多了真正的叶子,但比起较进化的种子植
- 白氏树蛙白氏树蛙(学名:Litoria caerulea),别称老爷树蛙、绿雨滨蛙,是一种原产于澳大利亚和新几内亚岛的树蛙,后被引入至美国和新西兰。白氏树蛙属雨滨蛙属(Litoria),它在生理学分类上很接近
- 白昼之夜白昼之夜(法语:Nuit Blanche,又称白夜,也曾被翻译为白色夜晚)是法国首都巴黎举办的一个文化活动,开始于2002年10月,于每年10月第一个周六晚间六点至周日清晨六点举行。在白昼之夜时
