掠食者—猎物方程

✍ dations ◷ 2025-12-07 05:25:58 #掠食者—猎物方程
洛特卡-沃尔泰拉方程(Lotka-Volterra equation)别称掠食者—猎物方程。是一个二元一阶非线性微分方程组成。经常用来描述生物系统中,掠食者与猎物进行互动时的动态模型,也就是两者族群规模的消长。此方程分别在1925年与1926年,由阿弗雷德·洛特卡与维多·沃尔泰拉独立发表。以下将式子乘开,如此可以较容易地解释方程式的实际意义。第一式所表达的是猎物族群的增值速度:此模型假设猎物所接受的食物供给已经达到最极限,且除非遭遇掠食者的捕食,否则繁殖数量的增加以指数方式成长,其指数成长的情形,则以上述方程式中的 αx 表现。此外并假设猎物遭遇捕食的比例,和猎物遭遇掠食者的机会成常数比,以上述方程式中的 βxy 表现。如果 x 或 y 其中一个为零,则皆有可能是没有捕食行为出现。由上述的方程式可知:猎物族群规模的改变,源于本身受到捕食而产生的成长衰减。第二式所表达的是掠食者族群的增值速度:此方程式中的 δxy 表示掠食者族群的成长(可能会与掠食者与猎物的数量比例相似,但是掠食者与猎物的数量比例是以不同的常数表示,且不一定与族群的成长相等。) γy 表示掠食者的自然死亡,为指数衰减。由上述的方程式可知:掠食者族群规模的改变,是猎食者族群的成长,减去其自然死亡的部分。此方程式拥有周期性的解,但没有解析解。通过龙格-库塔法的数字计算之后,掠食者与猎物的族群大小变化可以表达成两个曲线图形。生态上的实际大致依照此简单模式,不过详细状况会有所出入。在此模式系统中,当猎物数量充足的时候,掠食者的族群也会兴旺起来。不过掠食者的族群最后仍然会因为超过猎物所能供给的数量而开始衰减。当掠食者的族群族群缩减,则猎物族群将会再次增大。两者的族群大小便以周期性的成长与衰减进行循环。族群的平衡会发生在族群大小不再变化的时候。例如:两条微分方程皆等于零的时候。求解上述方程式的 x 与 y 可得:以及由此可知有两组解。第一组解实际上是表示两个物种的灭绝,若是两个族群皆为零,则此状况将永久持续下去。第二组解表示一个不动点,意思是两个族群能够维持一个不为零的数量,并且在简单的模型中能够永久持续。系数 α, β, γ, 与 δ ,能够决定族群规模将在哪种情况下达成平衡状态。不动点的稳定性可以利用偏导数,将其以线性化方式呈现。产生的掠食者猎物模型之雅可比矩阵如下:当数值为(0,0)稳定状态,则雅可比矩阵变成:此矩阵的特征值为:模型中的 α 与 γ 永远比零大,且每一的特征值的符号永远不一样。由此可知位在原点的不动点是一个鞍点(saddle point)。此不动点的稳定性相当重要,当处于稳定态的时候,非零的族群会趋向它。一些初始的族群可能会走向灭绝。然而当不动点位于原点时,也是一个鞍点,因此并不稳定。所以在此模型中,两个物种皆难以灭绝。除非以人为方式将猎物完全消灭,并使掠食者因饥荒而死亡。而若是将掠食者完全消灭,则猎物的族群增长情形,将会脱离此简单模型。在第二不动点求 J 值可得:此矩阵的特征值为:当特征值皆为复数时,此不动点为一个焦点。实部为零使其成为一个中心。 这表示掠食者与猎物族群规模呈现循环消长,并且以此不动点为中心来回震荡。d r d t = 2 ∗ r ( t ) − α ∗ r ( t ) ∗ f ( t ) 1 + s ∗ r ( t ) {displaystyle {frac {dr}{dt}}=2*r(t)-{frac {alpha *r(t)*f(t)}{1+s*r(t)}}} ;d f d t = − f ( t ) + α ∗ r ( t ) ∗ f ( t ) 1 + s ∗ r ( t ) {displaystyle {frac {df}{dt}}=-f(t)+{frac {alpha *r(t)*f(t)}{1+s*r(t)}}}图示当 α=0.01,s=0.001 时的饱和沃尔泰拉方程。

相关

  • 非洲之角非洲之角(索马里语:Geeska Afrika;吉兹语:የአፍሪካ ቀንድ;阿拉伯语:القرن الأفريقي‎),有时按照其地理位置,又称东北非洲,作为一个半岛,则又称索马里半岛。非洲之角位
  • 性强迫症性强迫症(英语:Sexual obsessions)是一种与性相关的强迫症,患者会不自觉的非常渴望进行性行为。性强迫症在强迫症患者当中非常普遍,约在两成的患者身上出现。基于这种成瘾症与性
  • 东海大学东海大学可以指:
  • 震br /旦br /纪埃迪卡拉纪(英语:Ediacaran),又称艾迪卡拉纪、震旦纪、文德纪,是元古宙最后的一段时期。一般指6.35-5.41亿年前。学者曾用这个名字指称不同阶段,直到2004年5月13日,国际地质科学联
  • 调频调频(英语:Frequency Modulation,缩写:FM)是一种以载波的瞬时频率变化来表示信息的调制方式。(与此相对应的调幅方式是透过载波幅度的变化来表示信息,而其频率却保持不变。)在模拟应
  • 新桥恋人《新桥恋人》(Les Amants du Pont-Neuf)是一部1991年的法国电影,莱奥·卡拉克斯导演,朱丽叶·比诺什、德尼·拉旺主演。影片讲述了一个富家女和一名流浪汉的爱情故事。本片是当
  • 西伯利亚联邦管区西伯利亚联邦管区(俄语:Сибирский федеральный округ,罗马化:Sibirskí federaľný okrug)位于俄罗斯亚洲部分中部,是目前俄罗斯的联邦管区之一。2018
  • 人工计算员兼天文学家哈佛计算员(Harvard Computers)是指于1877到1919年担任哈佛大学天文台台长的天文学家爱德华·皮克林雇用作为处理天文资料的女性技术人员的称呼,其中著名的计算员有威廉敏娜·
  • 金融科技园区金融科技园区是中华民国金融管理委员会成立的全国第一个“金融科技产业生态的实体共创空间”,园区全称为金融科技创新园区FinTechSpace,位于金融业者群聚的台北市南海路上的仰
  • 酒醉酒精中毒,轻度称“酒醉”,是人血液酒精浓度达到一定浓度后发生的一种生理现象。较为常见的症状包括语言含混、多幸福感、平衡失控、肌肉失调、皮肤转红、眼部充血、呕吐、举止