旅行推销员问题

✍ dations ◷ 2025-08-29 18:38:18 #旅行推销员问题
行商问题(最短路径问题)(英语:travelling salesman problem, TSP)是这样一个问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。它是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。TSP是旅行购买者问题(英语:travelling purchaser problem)与车辆路径问题的一种特殊情况。作为计算复杂性理论中的一个典型的判定性问题,TSP的一个版本是给定一个图和长度 L,要求回答图中是否存在比 L 短的回路(英语:circuit或tour)。该问题被划分为NP完全问题。已知TSP算法最坏情况下的时间复杂度随着城市数量的增多而成超多项式(可能是指数(英语:Exponential time hypothesis))级别增长。问题在1930年首次被形式化,并且是在最优化中研究最深入的问题之一。许多优化方法都用它作为一个基准。尽管问题在计算上很困难,但已经有了大量的启发式和精确方法,因此可以完全求解城市数量上万的实例,并且甚至能在误差1%范围内估计上百万个城市的问题。甚至纯粹形式的TSP都有若干应用,如企划、物流、芯片制造。稍作修改,就是DNA测序等许多领域的一个子问题。在这些应用中,“城市”的概念用来表示客户、焊接点或DNA片段,而“距离”的概念表示旅行时间或成本或DNA片段之间的相似性度量。TSP还用在天文学中,观察很多源的天文学家希望减少在源之间转动望远镜的时间。许多应用(如资源或时间窗口有限)中,可能会加入额外的约束。可以用无向加权图来对TSP建模,则城市是图的顶点,道路是图的边,道路的距离就是该边的长度。它是起点和终点都在一个特定顶点,访问每个顶点恰好一次的最小化问题。通常,该模型是一个完全图(即每对顶点由一条边连接)。如果两个城市之间不存在路径,则增加一条非常长的边就可以完成图,而不影响计算最优回路。在对称TSP问题中,两座城市之间来回的距离是相等的,形成一个无向图。这种对称性将解的数量减少了一半。在非对称TSP问题中,可能不是双向的路径都存在,或是来回的距离不同,形成了有向图。交通事故、单行道和出发与到达某些城市机票价格不同等都是打破这种对称性的例子。单钻头的运动可以看成是典型的TSP问题。TSP可以用整数线性规划来形式化。 用数字 0, ..., n 标记这些城市(打孔位置),并定义:对于 i = 0, ..., n,令 u i {displaystyle u_{i}} 为一人工变量,最后把 c i j {displaystyle c_{ij}} 作为从城市 i 到 j 的距离。那么TSP可以写成下面的整数线性规划问题:第一组等式要求每个城市都能另一个城市前来,而第二组等式要求每个城市都能出发。最后的约束迫使覆盖所有城市的路径只有一条,而不是两条或者多条分散的路径在一起覆盖的。要证明这一点,下面会去证 (1)每个可行解包含只有一条封闭城市序列,以及(2)对于每条覆盖所有城市的单独路径,虚拟变量 u i {displaystyle u_{i}} 有值可以满足约束。证明可行解中的每个子回路经过0号城市(注意到等式保证了只有一条这样的路径),就能证明所有可行解只包含一个封闭城市序列。对于若我们对所有 x i j = 1 {displaystyle x_{ij}=1} 对应的不等式求和的话,对 k 步不经过0号城市的任何子回路,我们得到:这构成矛盾。必须证明对每个覆盖所有城市的单独回路,虚拟变量 u i {displaystyle u_{i}} 有值可以满足约束。为了不失一般性,定义起始点为0号城市。如果在第 t 步访问城市 i 后 (i, t = 1, 2, ..., n) 选取 u i = t {displaystyle u_{i}=t} 。则由于 u i {displaystyle u_{i}} 不大于 n 而 u j {displaystyle u_{j}} 不小于1;因此,每当 x i j = 0 {displaystyle x_{ij}=0} 时满足约束。对于 x i j = 1 {displaystyle x_{ij}=1} ,我们有:满足约束。

相关

  • 流鼻血鼻衄,俗称流鼻血、淌大寒,称鼻出血,是指由于鼻孔内的毛细血管脆弱,血管受到破坏后,血液从鼻孔里流出,是一种医学上的疑难病症。大多数是从一个鼻孔里出,但偶尔也会两个鼻孔一起出。
  • 环境承载力环境承载力,有时也称环境容纳量、环境容受力、环境人口容量。是指在一定条件下某一环境体系所能承担的人类数量及人类活动总量,它既包括自然环境提供给人的各类有形的与无形的
  • 糖醇糖醇(Sugar alcohol)是指糖类的醛、酮羰基被还原为羟基后生成的多元醇,通式 H(CHOH)n+1H。实验室一般通过用硼氢化钠、钠汞齐或雷尼镍催化还原糖类制取糖醇。工业上采用镍存在
  • 壳聚糖壳聚糖(英语:Chitosan),是一种线性多糖,当中由氨基葡萄糖(脱乙酰单位)和N-乙酰葡糖胺(乙酰单位)随机分布,并透过β-(1-4)糖苷键组合而成。由于甲壳素(Chitin)也有多个译名,如几丁质或壳多糖
  • 原始希腊原始希腊语(Proto-Greek、Proto-Hellenic)是假定的所有已知希腊语变体的最近公共祖先,包括了迈锡尼语,古希腊语方言如雅典-爱奥尼亚方言, 伊欧里斯方言,多利亚方言和西北希腊方言
  • 立敕尔立敕尔(Albrecht Ritschl, 1822年-1889年),德国人,是十九世纪后半最具影响力的神学家。立敕尔想要使信仰脱离经院哲学的宰制。他的系统反映着康德对纯粹理性的负面批判,及对道德性
  • 颞叶.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 组蛋白组蛋白(英语:histone)是真核生物体细胞染色质与原核细胞中的碱性蛋白质,和DNA共同组成核小体结构。它们是染色质的主要蛋白质组分,作为DNA缠绕的线轴,并在基因调控(英语:Regulation
  • 导尿管导尿管是一种辅助排尿的医疗设备。其一般经由尿道插入膀胱,进而引出尿液出来。导尿管的结构中,其头端有一个气囊,用于固定导尿管,使其得以留在膀胱内防止脱出。 导尿管型号,按照
  • 果渣果渣(Pomace)是指植物的果实在经过压榨,以提取其汁液或油份之后,所余下的固态部分,包括有果皮、果肉、果籽、果梗等。常见的水果有:葡萄、橄榄等。一般来说,果渣都没有特别作用,只有