旅行推销员问题

✍ dations ◷ 2025-07-19 06:56:11 #旅行推销员问题
行商问题(最短路径问题)(英语:travelling salesman problem, TSP)是这样一个问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。它是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。TSP是旅行购买者问题(英语:travelling purchaser problem)与车辆路径问题的一种特殊情况。作为计算复杂性理论中的一个典型的判定性问题,TSP的一个版本是给定一个图和长度 L,要求回答图中是否存在比 L 短的回路(英语:circuit或tour)。该问题被划分为NP完全问题。已知TSP算法最坏情况下的时间复杂度随着城市数量的增多而成超多项式(可能是指数(英语:Exponential time hypothesis))级别增长。问题在1930年首次被形式化,并且是在最优化中研究最深入的问题之一。许多优化方法都用它作为一个基准。尽管问题在计算上很困难,但已经有了大量的启发式和精确方法,因此可以完全求解城市数量上万的实例,并且甚至能在误差1%范围内估计上百万个城市的问题。甚至纯粹形式的TSP都有若干应用,如企划、物流、芯片制造。稍作修改,就是DNA测序等许多领域的一个子问题。在这些应用中,“城市”的概念用来表示客户、焊接点或DNA片段,而“距离”的概念表示旅行时间或成本或DNA片段之间的相似性度量。TSP还用在天文学中,观察很多源的天文学家希望减少在源之间转动望远镜的时间。许多应用(如资源或时间窗口有限)中,可能会加入额外的约束。可以用无向加权图来对TSP建模,则城市是图的顶点,道路是图的边,道路的距离就是该边的长度。它是起点和终点都在一个特定顶点,访问每个顶点恰好一次的最小化问题。通常,该模型是一个完全图(即每对顶点由一条边连接)。如果两个城市之间不存在路径,则增加一条非常长的边就可以完成图,而不影响计算最优回路。在对称TSP问题中,两座城市之间来回的距离是相等的,形成一个无向图。这种对称性将解的数量减少了一半。在非对称TSP问题中,可能不是双向的路径都存在,或是来回的距离不同,形成了有向图。交通事故、单行道和出发与到达某些城市机票价格不同等都是打破这种对称性的例子。单钻头的运动可以看成是典型的TSP问题。TSP可以用整数线性规划来形式化。 用数字 0, ..., n 标记这些城市(打孔位置),并定义:对于 i = 0, ..., n,令 u i {displaystyle u_{i}} 为一人工变量,最后把 c i j {displaystyle c_{ij}} 作为从城市 i 到 j 的距离。那么TSP可以写成下面的整数线性规划问题:第一组等式要求每个城市都能另一个城市前来,而第二组等式要求每个城市都能出发。最后的约束迫使覆盖所有城市的路径只有一条,而不是两条或者多条分散的路径在一起覆盖的。要证明这一点,下面会去证 (1)每个可行解包含只有一条封闭城市序列,以及(2)对于每条覆盖所有城市的单独路径,虚拟变量 u i {displaystyle u_{i}} 有值可以满足约束。证明可行解中的每个子回路经过0号城市(注意到等式保证了只有一条这样的路径),就能证明所有可行解只包含一个封闭城市序列。对于若我们对所有 x i j = 1 {displaystyle x_{ij}=1} 对应的不等式求和的话,对 k 步不经过0号城市的任何子回路,我们得到:这构成矛盾。必须证明对每个覆盖所有城市的单独回路,虚拟变量 u i {displaystyle u_{i}} 有值可以满足约束。为了不失一般性,定义起始点为0号城市。如果在第 t 步访问城市 i 后 (i, t = 1, 2, ..., n) 选取 u i = t {displaystyle u_{i}=t} 。则由于 u i {displaystyle u_{i}} 不大于 n 而 u j {displaystyle u_{j}} 不小于1;因此,每当 x i j = 0 {displaystyle x_{ij}=0} 时满足约束。对于 x i j = 1 {displaystyle x_{ij}=1} ,我们有:满足约束。

相关

  • 世界结核病日世界结核病日(英语:World Tuberculosis Day,或译世界防治结核病日)定于每年的3月24日,是纪念1882年德国微生物学家罗伯特·科霍向一群德国柏林医生发表他对结核病病原菌的发现。
  • 伊斯兰伊斯兰经济是指按照伊斯兰经典《古兰经》和圣训建立的的经济体系,其运作严格按照《古兰经》和圣训的教义进行。其特点是要交纳天课,借贷不得收取利息,不进行向社会索取回报的投
  • 跳婴儿节跳婴儿节(西班牙语:El Colacho),原意为魔鬼的跳跃(西班牙语:El Salto del Colacho),是西班牙传统的节日,最早可追溯至1620年,这个节庆的目的是用来庆祝举行在布哥斯省布哥斯卡斯特里略
  • 试验设计试验设计(Design of experiments),又称实验设计,是数理统计学的一个分支,科学探究的一部分,涉及“用何方法可更好的设计一个实验”,属于方法论的范畴。由于任何实验都会受到外来环
  • 概率论概率论(英语:Probability theory)是集中研究概率及随机现象的数学分支,是研究随机性或不确定性等现象的数学。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事
  • 西西里语51-AAA-re & -rf西西里语是一种属于罗曼语系的语言,主要使用于意大利的西西里岛一带,也扩及意大利半岛南部,以及马耳他共和国。使用人数约4,800,000人,包括海外约三十多国的移民
  • 生化危机生化危机系列(日版名:バイオハザード,BIOHAZARD,英文版名:Resident Evil,台湾译作“恶灵古堡”)是由日本卡普空公司推出,以恐怖惊悚与第三人称射击为主要内容的电子游戏系列。除电子
  • 蓝色蓝色是一种颜色,它是红绿蓝光的三原色中的其中一元,在这三种原色中它的波长最短(约470-440纳米)。由于空气中灰尘对日光的瑞利散射,晴天的天空是蓝色的。由于水分子中的氢-氧键对
  • 景观自然(英文:Nature),是指不断运行演化的宇宙万物,包括生物界和非生物界两个相辅相成的体系。人类所能理解地自然现象有:生物界的基因模因、共识主动、意识行为、社会活动和生态系统
  • 路易斯·阿姆斯特朗路易斯·阿姆斯特朗(英语:Louis Armstrong,1901年8月4日-1971年7月6日),美国爵士乐音乐家。阿姆斯特朗是20世纪最著名的爵士乐音乐家之一,被称为“爵士乐之父”。他以超凡的个人魅