旅行推销员问题

✍ dations ◷ 2025-07-08 17:07:58 #旅行推销员问题
行商问题(最短路径问题)(英语:travelling salesman problem, TSP)是这样一个问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。它是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。TSP是旅行购买者问题(英语:travelling purchaser problem)与车辆路径问题的一种特殊情况。作为计算复杂性理论中的一个典型的判定性问题,TSP的一个版本是给定一个图和长度 L,要求回答图中是否存在比 L 短的回路(英语:circuit或tour)。该问题被划分为NP完全问题。已知TSP算法最坏情况下的时间复杂度随着城市数量的增多而成超多项式(可能是指数(英语:Exponential time hypothesis))级别增长。问题在1930年首次被形式化,并且是在最优化中研究最深入的问题之一。许多优化方法都用它作为一个基准。尽管问题在计算上很困难,但已经有了大量的启发式和精确方法,因此可以完全求解城市数量上万的实例,并且甚至能在误差1%范围内估计上百万个城市的问题。甚至纯粹形式的TSP都有若干应用,如企划、物流、芯片制造。稍作修改,就是DNA测序等许多领域的一个子问题。在这些应用中,“城市”的概念用来表示客户、焊接点或DNA片段,而“距离”的概念表示旅行时间或成本或DNA片段之间的相似性度量。TSP还用在天文学中,观察很多源的天文学家希望减少在源之间转动望远镜的时间。许多应用(如资源或时间窗口有限)中,可能会加入额外的约束。可以用无向加权图来对TSP建模,则城市是图的顶点,道路是图的边,道路的距离就是该边的长度。它是起点和终点都在一个特定顶点,访问每个顶点恰好一次的最小化问题。通常,该模型是一个完全图(即每对顶点由一条边连接)。如果两个城市之间不存在路径,则增加一条非常长的边就可以完成图,而不影响计算最优回路。在对称TSP问题中,两座城市之间来回的距离是相等的,形成一个无向图。这种对称性将解的数量减少了一半。在非对称TSP问题中,可能不是双向的路径都存在,或是来回的距离不同,形成了有向图。交通事故、单行道和出发与到达某些城市机票价格不同等都是打破这种对称性的例子。单钻头的运动可以看成是典型的TSP问题。TSP可以用整数线性规划来形式化。 用数字 0, ..., n 标记这些城市(打孔位置),并定义:对于 i = 0, ..., n,令 u i {displaystyle u_{i}} 为一人工变量,最后把 c i j {displaystyle c_{ij}} 作为从城市 i 到 j 的距离。那么TSP可以写成下面的整数线性规划问题:第一组等式要求每个城市都能另一个城市前来,而第二组等式要求每个城市都能出发。最后的约束迫使覆盖所有城市的路径只有一条,而不是两条或者多条分散的路径在一起覆盖的。要证明这一点,下面会去证 (1)每个可行解包含只有一条封闭城市序列,以及(2)对于每条覆盖所有城市的单独路径,虚拟变量 u i {displaystyle u_{i}} 有值可以满足约束。证明可行解中的每个子回路经过0号城市(注意到等式保证了只有一条这样的路径),就能证明所有可行解只包含一个封闭城市序列。对于若我们对所有 x i j = 1 {displaystyle x_{ij}=1} 对应的不等式求和的话,对 k 步不经过0号城市的任何子回路,我们得到:这构成矛盾。必须证明对每个覆盖所有城市的单独回路,虚拟变量 u i {displaystyle u_{i}} 有值可以满足约束。为了不失一般性,定义起始点为0号城市。如果在第 t 步访问城市 i 后 (i, t = 1, 2, ..., n) 选取 u i = t {displaystyle u_{i}=t} 。则由于 u i {displaystyle u_{i}} 不大于 n 而 u j {displaystyle u_{j}} 不小于1;因此,每当 x i j = 0 {displaystyle x_{ij}=0} 时满足约束。对于 x i j = 1 {displaystyle x_{ij}=1} ,我们有:满足约束。

相关

  • 疑病症疑病症(英语:Hypochondriasis),也作疑病性神经症(Hypochondriacal neurosis)、虑病症,是指对自身出现的一些身体状况作出不合实际的解释,担心自己身患一种极为严重的疾病。疑病症患
  • 孝义市坐标:36°05′N 111°31′E / 36.083°N 111.517°E / 36.083; 111.517孝义市是中华人民共和国山西省的一个县级市,由吕梁市代管。位于山西中部偏南,太原盆地南缘,吕梁山脉中段
  • 自主神经系统自主神经系统(英语:autonomic nervous system,缩写为ANS),又称植物神经系统(vegetative nervous system,VNS)或内脏神经系统(visceral nervous system,VNS),与躯体神经系统共同组成脊椎
  • 牙套牙齿矫正器,又称齿列矫正器或俗称的牙套、牙箍,是齿列矫正所使用的一种装置,用来矫正牙齿至适当的咬合位置。矫正器通常被用来改善的咬合不良,包括戽斗、龅牙、前后牙错咬、开咬
  • 经期忧郁症经期忧郁症,或称经前不悦症,是严重的经前综合症。有月经的妇女中,有3%至8%受此症影响。 该症出现于月经周期的黄体期。经期忧郁症在2013年列入精神疾病诊断与统计手册中。目前
  • 甲硫氨酸腺苷转移酶甲硫氨酸腺苷转移酶(英语:Methionine adenosyltransferase)是一种催化甲硫氨酸与ATP合成S-腺苷甲硫氨酸(SAM)的酶。EC 1.1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21
  • 贝瑞塔皮埃特罗·贝雷塔武器制造厂股份公司(意大利语:Fabbrica d'Armi Pietro Beretta S.P.A.)是意大利主要的枪支制造商,他们的武器都广泛的被全世界的平民、警察与军队所使用。贝雷
  • 透翅目透翅目(Diaphanopterodea或Paramegasecoptera)是古生代中等至大型已灭绝的一目昆虫,包括一些早期的飞行昆虫。它们是古网翅总目下的一类专化昆虫,翅膀像新翅下纲般演化出可以折
  • 梅德福市梅德福(Medford)位于美国俄勒冈州南部,是杰克逊县的县治。该市最高点乐声安峰高1090米,是普雷斯科特公园的一部分。根据2000年美国人口普查,梅德福共有63,154人,其中白人占89.99%
  • Basidiomycota担子菌门(学名:Basidiomycota)是一类高等真菌,构成双核亚界,包含2万多种,包括蘑菇、木耳等主要食用菌。更具体地说,担子菌门包括以下组:蘑菇,马勃,stinkhorns(鬼笔科),支架真菌(英语:Bracke