力矩

✍ dations ◷ 2025-07-03 13:15:21 #力矩
在物理学里,作用力促使物体绕着转动轴或支点转动的趋向,称为力矩(torque),也就是扭转的力。转动力矩又称为转矩。力矩能够使物体改变其旋转运动。推挤或拖拉涉及到作用力 ,而扭转则涉及到力矩。如图右,力矩 τ {displaystyle {boldsymbol {tau }},!} 等于径向矢量 r {displaystyle mathbf {r} ,!} 与作用力 F {displaystyle mathbf {F} ,!} 的外积。简略地说,力矩是一种施加于好像螺栓或飞轮一类的物体的扭转力。例如,用扳手的开口箝紧螺栓或螺帽,然后转动扳手,这动作会产生力矩来转动螺栓或螺帽。根据国际单位制,力矩的单位是牛顿 ⋅ {displaystyle cdot } 米。本物理量非能量,因此不能以焦耳(J)作单位;根据英制单位,力矩的单位则是英尺 ⋅ {displaystyle cdot } 磅。力矩的表示符号是希腊字母 τ {displaystyle {boldsymbol {tau }},!} ,或 M {displaystyle mathbf {M} ,!} 。力矩与三个物理量有关:施加的作用力 F {displaystyle mathbf {F} ,!} 、从转轴到施力点的位移矢量 r {displaystyle mathbf {r} ,!} 、两个矢量之间的夹角 θ {displaystyle theta ,!} 。力矩 τ {displaystyle {boldsymbol {tau }},!} 以矢量方程表示为力矩的大小为力矩的概念,起源于阿基米德对杠杆的研究。力矩等于作用于杠杆的作用力乘以支点到力的垂直距离。例如,3 牛顿的作用力,施加于离支点2 米处,所产生的力矩,等于1牛顿的作用力,施加于离支点6米处,所产生的力矩。力矩是个矢量。力矩的方向与它所造成的旋转运动的旋转轴同方向。力矩的方向可以用右手定则来决定。假设作用力垂直于杠杆。将右手往杠杆的旋转方向弯卷,伸直的大拇指与支点的旋转轴同直线,则大拇指指向力矩的方向。更一般地,如图右,假设作用力 F {displaystyle mathbf {F} ,!} 施加于位置为 r {displaystyle mathbf {r} ,!} 的粒子。选择原点为参考点,力矩 τ {displaystyle {boldsymbol {tau }},!} 以方程定义为力矩大小为其中, θ {displaystyle theta ,!} 是两个矢量 F {displaystyle mathbf {F} ,!} 与 r {displaystyle mathbf {r} ,!} 之间的夹角。力矩大小也可以表示为其中, F ⊥ {displaystyle F_{perp },!} 是作用力 F {displaystyle mathbf {F} ,!} 对于 r {displaystyle mathbf {r} ,!} 的垂直分量。任何与粒子的位置矢量平行的作用力不会产生力矩。从叉积的性质,可推论,力矩垂直于位置矢量 r {displaystyle mathbf {r} ,!} 和作用力 F {displaystyle mathbf {F} ,!} 。力矩的方向与旋转轴平行,由右手定则决定。假设一个粒子的位置为 r {displaystyle mathbf {r} ,!} ,动量为 p {displaystyle mathbf {p} ,!} 。选择原点为参考点,此粒子的角动量 L {displaystyle mathbf {L} ,!} 为粒子的角动量对于时间的导数为其中, m {displaystyle m,!} 是质量, v {displaystyle mathbf {v} ,!} 是速度, a {displaystyle mathbf {a} ,!} 是加速度。应用牛顿第二定律, F = m a {displaystyle mathbf {F} =mmathbf {a} ,!} ,可以得到按照力矩的定义, τ   = d e f   r × F {displaystyle {boldsymbol {tau }} {stackrel {def}{=}} mathbf {r} times mathbf {F} ,!} ,所以,作用于一物体的力矩,决定了此物体的角动量 L {displaystyle mathbf {L} ,!} 对于时间 t {displaystyle t,!} 的导数。假设几个力矩共同作用于物体,则这几个力矩的合力矩 τ n e t {displaystyle {boldsymbol {tau }}_{mathrm {net} },!} 共同决定角动量的对于时间的变化:关于物体的绕着固定轴的旋转运动,其中, I {displaystyle I,!} 是物体对于固定轴的转动惯量, ω {displaystyle {boldsymbol {omega }},!} 是物体的角速度。所以,取上述方程对时间的导数:其中, α {displaystyle {boldsymbol {alpha }},!} 是物体的角加速度。力矩的定义是距离乘以作用力。根据国际单位制,力矩的单位是牛顿 ⋅ {displaystyle cdot } 米(Nm)。虽然牛顿与米的次序,在数学上,是可以交换的,但是国际重量测量局(Bureau International des Poids et Mesures)规定这次序应是牛顿 ⋅ {displaystyle cdot } 米,而不是米 ⋅ {displaystyle cdot } 牛顿。根据国际单位制,能量与功量的单位是焦耳,定义为1牛顿 ⋅ {displaystyle cdot } 米。但是,焦耳不是力矩的单位。因为,能量是力点积距离的标量;而力矩是距离叉积作用力的矢量。当然,量纲相同并不尽是巧合,使1牛顿 ⋅ {displaystyle cdot } 米的力矩,作用1 全转,需要恰巧 2 π {displaystyle 2pi ,!} 焦耳的能量:其中, E {displaystyle E,!} 是能量, θ {displaystyle theta ,!} 是移动的角度,单位是弧度。根据英制,力矩的单位是英尺 ⋅ {displaystyle cdot } 磅。在物理学外,其他的学术界里,力矩时常会如以下定义:右图显示出矩臂(moment arm)、前面所提及的相对位置 r {displaystyle mathbf {r} ,!} 、作用力 F {displaystyle mathbf {F} ,!} (force)。这个定义并没有指出力矩的方向,只有力矩的大小。所以,并不适用于三维空间问题。当一个物体在静态平衡时,合力是零,对任何一点的合力矩也是零。二维空间的平衡要求是这里, F x ,   F y {displaystyle F_{x}, F_{y},!} 是作用力 F {displaystyle mathbf {F} ,!} 分别在x-轴与y-轴的分量。假若,这三个联立方程有解,则称此系统为静定系统;不然,则称为静不定系统。假设施加作用力于一物体,使得此物体移动一段距离,则作用力对于此物体做了机械功。类似地,假设施加力矩于一物体,使得此物体旋转一段角位移,则力矩对于此物体做了机械功。对于穿过质心的固定轴的旋转运动,以数学方程表达,其中, W {displaystyle W,!} 是机械功, θ 1 {displaystyle theta _{1},!} 、 θ 2 {displaystyle theta _{2},!} 分别是初始角和终结角, d θ {displaystyle mathrm {d} theta ,!} 是无穷小角位移元素。根据功能定理, W {displaystyle W,!} 也代表物体的旋转动能 K r o t {displaystyle K_{mathrm {rot} },!} 的改变,以方程表达,功率是单位时间内所做的机械功。对于旋转运动,功率 P {displaystyle P,!} 以方程表达为请注意,力矩注入的功率只跟瞬时角速度有关,而角速度是否在增加中,或在减小中,或保持不变,功率都与这些状况无关。实际上,在与大型输电网络相连接的发电厂里,可以观察到这关系。发电厂的发电机的角速度是由输电网络的频率设定,而发电厂的功率输出是由作用于发电机转动轴的力矩所决定。在计算功率时,必须使用一致的单位。采用国际单位制,功率的单位是瓦特,力矩的单位是牛顿-米,角速度的单位是每秒弧度(不是每分钟转速rpm,也不是每秒钟转速)。力矩原理阐明,几个作用力施加于某位置所产生的力矩的总和,等于这些作用力的合力所产生的力矩。力矩原理又名伐里农定理(Varignon's theorem)(以法国科学家兼神父皮埃尔·伐里农命名),以方程表达,

相关

  • 勃朗特三姐妹勃朗特三姊妹(英语:Brontë family or The Brontës),是三位英国著名文学女作家,并且是亲生三姊妹,分别是:1847年,夏洛蒂的《简·爱》,艾米莉的《呼啸山庄》,安妮的《荒野庄园的房客》
  • 夜惊夜惊(night terror、sleep terror,北方话称撒呓挣、夜惊症),在睡眠中突然尖叫、哭喊,意识呈朦胧状态,发作后约一至两分钟,又复入睡,隔天则不知何事。常见于儿童,其中男童又略多于女童
  • 日本国会政治主题国会(日语:国会/こっかい kokkai ?)为日本的最高权力机构与立法机构,现今依《日本国宪法》而设置,采两院制,由众议院与参议院构成。今众议院议员设465席、参议院议员设24
  • 及物动词在语法学上,及物动词(又叫他动词、外动词)是需要支配一个直接主词和一个或一个以上宾语的动词。此与不搭配宾语的不及物动词相对。一个搭配间接宾语和直接宾语的动词又称“双及
  • 地幔地幔(德语:Erdmantel;英语:mantle;法语:manteau;原于拉丁语:mantellum,意为斗篷),台湾称作地函,位于地壳之下,地核之上,和地壳以莫氏不连续面为界,和地核间则以古氏不连续面为界。厚度约290
  • 嗜食极端生物嗜食极端生物(英文:Extremotroph)是一个生物取食种类的问题,这类生物的食物通常被认为是地球上大多数生物不会利用的。“极端”的定义是人类中心论的,而对这些生物本身而言,这些食
  • 轻链肌球蛋白轻链(英语:Myosin light chain)是肌球蛋白的一个亚基。肌球蛋白轻链拥有自己的肽链,这点与重链不同。它们不被包括在肌球蛋白家族中,但对形成肌球蛋白酶催化超分子复合体
  • 甾类激素甾体激素(英语:Steroid hormone、又称甾体激素),是一类四环脂肪烃化合物,具有环戊烷多氢菲母核。类固醇激素是作为激素的类固醇。 这些包括性腺的性激素和肾上腺皮质的皮质类固醇
  • 诉诸冗赘诉诸冗赘(英语:proof by verbosity;拉丁语:argumentum verbosium),是一种非形式谬误,系借由使用冗长复杂、看似高深莫测的数学公式或专业术语证成主张,令读者无从反驳,要么承认自己看
  • 阿蒙霍特普阿蒙霍特普,是以下几位古埃及法老的名字。阿蒙霍特普是一个拉名(出生时以太阳神拉的儿子的名义取的名字,可以理解为真名)。它的希腊语形式是阿蒙诺菲斯(Αμένοφις),这个形式