首页 >
力矩
✍ dations ◷ 2025-12-10 15:20:57 #力矩
在物理学里,作用力促使物体绕着转动轴或支点转动的趋向,称为力矩(torque),也就是扭转的力。转动力矩又称为转矩。力矩能够使物体改变其旋转运动。推挤或拖拉涉及到作用力
,而扭转则涉及到力矩。如图右,力矩
τ
{displaystyle {boldsymbol {tau }},!}
等于径向矢量
r
{displaystyle mathbf {r} ,!}
与作用力
F
{displaystyle mathbf {F} ,!}
的外积。简略地说,力矩是一种施加于好像螺栓或飞轮一类的物体的扭转力。例如,用扳手的开口箝紧螺栓或螺帽,然后转动扳手,这动作会产生力矩来转动螺栓或螺帽。根据国际单位制,力矩的单位是牛顿
⋅
{displaystyle cdot }
米。本物理量非能量,因此不能以焦耳(J)作单位;根据英制单位,力矩的单位则是英尺
⋅
{displaystyle cdot }
磅。力矩的表示符号是希腊字母
τ
{displaystyle {boldsymbol {tau }},!}
,或
M
{displaystyle mathbf {M} ,!}
。力矩与三个物理量有关:施加的作用力
F
{displaystyle mathbf {F} ,!}
、从转轴到施力点的位移矢量
r
{displaystyle mathbf {r} ,!}
、两个矢量之间的夹角
θ
{displaystyle theta ,!}
。力矩
τ
{displaystyle {boldsymbol {tau }},!}
以矢量方程表示为力矩的大小为力矩的概念,起源于阿基米德对杠杆的研究。力矩等于作用于杠杆的作用力乘以支点到力的垂直距离。例如,3 牛顿的作用力,施加于离支点2 米处,所产生的力矩,等于1牛顿的作用力,施加于离支点6米处,所产生的力矩。力矩是个矢量。力矩的方向与它所造成的旋转运动的旋转轴同方向。力矩的方向可以用右手定则来决定。假设作用力垂直于杠杆。将右手往杠杆的旋转方向弯卷,伸直的大拇指与支点的旋转轴同直线,则大拇指指向力矩的方向。更一般地,如图右,假设作用力
F
{displaystyle mathbf {F} ,!}
施加于位置为
r
{displaystyle mathbf {r} ,!}
的粒子。选择原点为参考点,力矩
τ
{displaystyle {boldsymbol {tau }},!}
以方程定义为力矩大小为其中,
θ
{displaystyle theta ,!}
是两个矢量
F
{displaystyle mathbf {F} ,!}
与
r
{displaystyle mathbf {r} ,!}
之间的夹角。力矩大小也可以表示为其中,
F
⊥
{displaystyle F_{perp },!}
是作用力
F
{displaystyle mathbf {F} ,!}
对于
r
{displaystyle mathbf {r} ,!}
的垂直分量。任何与粒子的位置矢量平行的作用力不会产生力矩。从叉积的性质,可推论,力矩垂直于位置矢量
r
{displaystyle mathbf {r} ,!}
和作用力
F
{displaystyle mathbf {F} ,!}
。力矩的方向与旋转轴平行,由右手定则决定。假设一个粒子的位置为
r
{displaystyle mathbf {r} ,!}
,动量为
p
{displaystyle mathbf {p} ,!}
。选择原点为参考点,此粒子的角动量
L
{displaystyle mathbf {L} ,!}
为粒子的角动量对于时间的导数为其中,
m
{displaystyle m,!}
是质量,
v
{displaystyle mathbf {v} ,!}
是速度,
a
{displaystyle mathbf {a} ,!}
是加速度。应用牛顿第二定律,
F
=
m
a
{displaystyle mathbf {F} =mmathbf {a} ,!}
,可以得到按照力矩的定义,
τ
=
d
e
f
r
×
F
{displaystyle {boldsymbol {tau }} {stackrel {def}{=}} mathbf {r} times mathbf {F} ,!}
,所以,作用于一物体的力矩,决定了此物体的角动量
L
{displaystyle mathbf {L} ,!}
对于时间
t
{displaystyle t,!}
的导数。假设几个力矩共同作用于物体,则这几个力矩的合力矩
τ
n
e
t
{displaystyle {boldsymbol {tau }}_{mathrm {net} },!}
共同决定角动量的对于时间的变化:关于物体的绕着固定轴的旋转运动,其中,
I
{displaystyle I,!}
是物体对于固定轴的转动惯量,
ω
{displaystyle {boldsymbol {omega }},!}
是物体的角速度。所以,取上述方程对时间的导数:其中,
α
{displaystyle {boldsymbol {alpha }},!}
是物体的角加速度。力矩的定义是距离乘以作用力。根据国际单位制,力矩的单位是牛顿
⋅
{displaystyle cdot }
米(Nm)。虽然牛顿与米的次序,在数学上,是可以交换的,但是国际重量测量局(Bureau International des Poids et Mesures)规定这次序应是牛顿
⋅
{displaystyle cdot }
米,而不是米
⋅
{displaystyle cdot }
牛顿。根据国际单位制,能量与功量的单位是焦耳,定义为1牛顿
⋅
{displaystyle cdot }
米。但是,焦耳不是力矩的单位。因为,能量是力点积距离的标量;而力矩是距离叉积作用力的矢量。当然,量纲相同并不尽是巧合,使1牛顿
⋅
{displaystyle cdot }
米的力矩,作用1 全转,需要恰巧
2
π
{displaystyle 2pi ,!}
焦耳的能量:其中,
E
{displaystyle E,!}
是能量,
θ
{displaystyle theta ,!}
是移动的角度,单位是弧度。根据英制,力矩的单位是英尺
⋅
{displaystyle cdot }
磅。在物理学外,其他的学术界里,力矩时常会如以下定义:右图显示出矩臂(moment arm)、前面所提及的相对位置
r
{displaystyle mathbf {r} ,!}
、作用力
F
{displaystyle mathbf {F} ,!}
(force)。这个定义并没有指出力矩的方向,只有力矩的大小。所以,并不适用于三维空间问题。当一个物体在静态平衡时,合力是零,对任何一点的合力矩也是零。二维空间的平衡要求是这里,
F
x
,
F
y
{displaystyle F_{x}, F_{y},!}
是作用力
F
{displaystyle mathbf {F} ,!}
分别在x-轴与y-轴的分量。假若,这三个联立方程有解,则称此系统为静定系统;不然,则称为静不定系统。假设施加作用力于一物体,使得此物体移动一段距离,则作用力对于此物体做了机械功。类似地,假设施加力矩于一物体,使得此物体旋转一段角位移,则力矩对于此物体做了机械功。对于穿过质心的固定轴的旋转运动,以数学方程表达,其中,
W
{displaystyle W,!}
是机械功,
θ
1
{displaystyle theta _{1},!}
、
θ
2
{displaystyle theta _{2},!}
分别是初始角和终结角,
d
θ
{displaystyle mathrm {d} theta ,!}
是无穷小角位移元素。根据功能定理,
W
{displaystyle W,!}
也代表物体的旋转动能
K
r
o
t
{displaystyle K_{mathrm {rot} },!}
的改变,以方程表达,功率是单位时间内所做的机械功。对于旋转运动,功率
P
{displaystyle P,!}
以方程表达为请注意,力矩注入的功率只跟瞬时角速度有关,而角速度是否在增加中,或在减小中,或保持不变,功率都与这些状况无关。实际上,在与大型输电网络相连接的发电厂里,可以观察到这关系。发电厂的发电机的角速度是由输电网络的频率设定,而发电厂的功率输出是由作用于发电机转动轴的力矩所决定。在计算功率时,必须使用一致的单位。采用国际单位制,功率的单位是瓦特,力矩的单位是牛顿-米,角速度的单位是每秒弧度(不是每分钟转速rpm,也不是每秒钟转速)。力矩原理阐明,几个作用力施加于某位置所产生的力矩的总和,等于这些作用力的合力所产生的力矩。力矩原理又名伐里农定理(Varignon's theorem)(以法国科学家兼神父皮埃尔·伐里农命名),以方程表达,
相关
- 肌腱病变肌腱病变(英语:Tendinopathy),又称肌腱炎(英语:Tendinitis)或肌腱退化(英语:Tendinosis),是一种肌腱的疾患,可造成疼痛、局部肿胀、与功能障碍。典型的疼痛会随着肢体动作而变得明显。好
- 依法利珠单抗依法利珠单抗(Efalizumab,药品商品名为 Raptiva,瑞体肤,默克)是牛皮癣的治疗用药,是一种抗CD11a的单克隆抗体制剂,其作用机制是辨识白血球上的CD11a抗原,使白血球与其他细胞附着的能
- 前列腺前列腺'(英语:prostate,又称摄护腺)为雄性哺乳动物生殖系统中的一个器官,属外分泌腺。与女性的斯基恩氏腺同源。前列腺是雄性哺乳动物生殖系统中的一个器官,属外分泌腺。在解剖学
- 西兰大陆坐标:40°S 170°E / 40°S 170°E / -40; 170西兰大陆(Zealandia),也被称为西兰洲、西兰蒂亚和Tasmantis,是一块几乎被淹没的微大陆(microcontinents)。于8500万到6000万年前从包
- 帕纳雷阿岛帕纳雷阿岛(Panarea)是西西里岛以北的火山岛岛链,伊奥利亚群岛8个岛中面积第2小的岛屿(仅大于巴西卢佐岛)。岛上常住人口约280人,但是在夏季,随着游客大量涌入,人口会戏剧性增长。近
- 电流表电流表(英文:Ammeter)又称安培计,是测量电流的仪表,主要类型有转动线圈式电流表、转动铁片式电流表、热偶式电流表、热线式电流表以及钳形电流表等。转动线圈式电流表(galvanomete
- HBrOsub3/sub溴酸的化学式为HBrO3,是溴的含氧酸之一,其中溴的氧化态为+5。它形成的盐类称为溴酸盐,衍生出的酸根离子称为“溴酸根”离子。固态溴酸及溴酸盐与氯酸/氯酸盐类似,都具有强氧化性
- 1758《自然系统》(拉丁语:Systema Naturae ,亦作:Systema Naturæ)是瑞典植物学及动物学学家、医生卡尔·林奈(Carl von Linné,1707-1778)的主要作品之一,这本书在植物及动物学两界引入
- 旁氏表旁氏表(Punnett square),又称棋盘法,是用于预测特定杂交或育种实验结果的一种图表。这种图表以发明者Reginald C. Punnett的姓名来命名,并被生物学家用于确定后代中拥有特定基因
- 巴伐利亚夺权巴伐利亚苏维埃共和国(德语:Bayerische Räterepublik)是德国十一月革命期间在巴伐利亚短暂出现的 一个国家。1919年4月6日由德国独立社会民主党、无政府主义者和巴伐利亚农民
