黎曼曲率张量

✍ dations ◷ 2025-08-03 11:27:24 #黎曼几何,广义相对论所用张量,曲率

在微分几何中,黎曼曲率张量或黎曼张量是表达黎曼流形的曲率的标准方式,更普遍的,它可以表示有仿射联络的流形的曲率,包括无扭率或有挠率的。曲率张量通过列维-奇维塔联络(更一般的,一个仿射联络) {\displaystyle \nabla }

线性变换 w R ( u , v ) w {\displaystyle w\mapsto R(u,v)w} 也称曲率变换。

进一步,由上式定义了如下的三重线性映射

映射 R {\displaystyle R} 关于每一个自变量都是 C {\displaystyle C^{\infty }} 线性的, 故 R {\displaystyle R} M {\displaystyle M} 上的 ( 1 , 3 ) {\displaystyle (1,3)} 型光滑张量场, 称之为仿射联络空间 ( M , ) {\displaystyle (M,\nabla )} 的曲率张量.在坐标向量场下, R {\displaystyle R} 可以表示为

还可以定义四重线性映射,如下

则映射 R {\displaystyle R} 关于每一个自变量都是 C {\displaystyle C^{\infty }} 线性的, 故 R {\displaystyle R} 是黎曼流形 ( M , g ) {\displaystyle (M,g)} 上的 ( 0 , 4 ) {\displaystyle (0,4)} 型光滑张量场, 称之为黎曼流形 ( M , g ) {\displaystyle (M,g)} 的黎曼曲率张量. 在坐标向量场下, R {\displaystyle R} 可以表示为

黎曼曲率张量有如下的对称性:

最后一个恒等式由里奇发现,但是称为第一比安基恒等式(First Bianchi identity)或代数比安基恒等式(Algebraic Bianchi identity),因为和下面的比安基恒等式相像。

这三个恒等式组成曲率张量对称性的完整列表,也就是给定说任何满足上述恒等式的张量,可以找到一个黎曼流形在某点的曲率张量和它一样。简单的计算表明这样一个张量有 n 2 ( n 2 1 ) / 12 {\displaystyle n^{2}(n^{2}-1)/12} 个独立分量。

另一个有用的恒等式可以由上面这些导出:

比安基恒等式(Bianchi identity),经常也叫第二比安基恒等式(Second Bianchi identity)或微分比安基恒等式(Differential Bianchi identity)。它涉及到协变导数:

给定流形某点的任一坐标表示,上述恒等式可以用黎曼曲率张量的分量形式表示为:

其中方括号表示对下标的反对称化,分号表示协变导数。这些恒等式在物理中有应用,特别是广义相对论。

相关

  • 牙科人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学牙医学(法语:Dentisterie; 英语:Dentistr
  • 迷惑龙迷惑龙属(学名:Apatosaurus)是蜥脚下目梁龙科下的一个属,生活于北美洲(尤其是美国)的侏罗纪启莫里阶到提通阶之间,约1亿5100万年前。迷惑龙脖子异常粗大,而尾巴则非常细长,它们是陆地
  • 研究开发研究开发(英语:Research and development;缩写:R&D),或译研究与开发,简称研发 ,是隶属于企业、大学及国家的机构所开展的科学项目研究与技术开发活动。于2006年,在研究开发领域上投
  • 信息爆炸信息爆炸(英语:information explosion)是指现代出版信息或数据数量的急速增加,以及因如此大量而带来的影响。当可用数据数量增加后,信息管理的问题变得困难,更可能导致信息过载。
  • 高烧发烧(英语:fever),又称作发热(英语:pyrexia)或发热反应(英语:febrile response),其定义为:体温在调节时超过了平常体温。现在医界并没有一致认可的正常体温上限,文献从37.3到38.3℃都有。
  • 台湾茶艺台湾茶道指台湾独自发展形成的仪式化的泡茶与饮茶技艺,和其他东亚各地区茶仪式一样,都是以品茶为主而发展出来的特殊文化,大约在1970年代后期开始形成。茶艺一词正式定名于1970
  • 平实世平实世(?-?),又名实世王。日本平安时代初期到中期贵族,仲野亲王之子赠太政大臣,官位从四位下,摄津守。
  • 戴复东戴复东(1928年4月25日-2018年2月25日) ,安徽无为人,生于广东广州,建筑学与建筑设计专家,中国工程院院士,同济大学建筑与城规学院教授。1948年考入国立中央大学,和钟训正、齐康、郭湖
  • 天主教塔利邦教区天主教塔利邦教区 (拉丁语:Dioecesis Talibonensis、他加禄语:Diyosesis ng Talibon)是菲律宾一个罗马天主教教区,属天主教宿雾总教区。辖区包括保和省。2006年有教友648,827人、
  • 水晶奖水晶奖可能是以下奖项之一: