耗散系统

✍ dations ◷ 2025-02-23 14:05:38 #热力学,统计力学,非线性物理学,非平衡态热力学

耗散系统(Dissipative system)是指远离热力学平衡状态的开放系统,此系统和外环境交换能量、物质和熵而继续维持平衡,对这种结构的研究,解释了自然界许多以前无法解释的现象。

耗散结构一词由比利时物理学家、化学家伊里亚·普里高津发明。普里高津创立了耗散结构理论,研究一个系统从混沌无序向有序转化的机理、条件和规律的科学,他为此曾获1977年诺贝尔化学奖。

常见的耗散结构包括对流、气旋、热带气旋及生物体。像镭射、瑞利–贝纳尔对流(英语:Rayleigh–Bénard convection)及B-Z反应也是耗散结构的例子。

耗散结构的特点是自发生的对称性破缺(各向异性)以及复杂,甚至混沌的结构。普里高津考虑的耗散结构有其动态的机制,因此可以视为热力学上的稳态,有时也可以用适当的非平衡热力学中的极值定理(英语:extremal principles in non-equilibrium thermodynamics)来描述。

以前的物理理论认为,只有能量最低时,系统最稳定,否则系统将消耗能量,产生熵,而使系统不稳定。耗散结构理论认为在高能量的情况下,开放系统也可以维持稳定。例如生物体,以前按照热力学定律,是一种极不稳定的结构,不断地产生熵而应自行解体,但实际是反而能不断自我完善。其实生物体是一种开放结构,不断从环境中吸收能量和物质,而向环境放出熵,因而能以破坏环境的方式保持自身系统的稳定。城市也是一种耗散结构。

牛顿的万有引力描述的是无始无终按规律运行的美好世界,而热力学第二定律描述的是一切终将走向灭亡的热寂,相较之下,耗散结构描述在远离平衡态的开放系统中“生”的机制,但其先决假定条件是存在提供能量、物质,并且可以交换熵的外环境。

一开放系统的熵变化可以表示如下:

熵变化可以分解为系统内( d S i {\displaystyle \,dS_{i}} )及系统外的( d S e {\displaystyle \,dS_{e}} ,和环境交换的熵)。

在封闭系统中系统无法和环境交换熵,因此( d S = d S i {\displaystyle dS=dS_{i}} ),根据热力学第二定律 d S i 0 {\displaystyle dS_{i}\geq 0} (等号成立时表示平衡),因此 d S 0 {\displaystyle dS\geq 0}

不过在开放系统中,系统可以和环境交换熵,因此可以形成一个稳态的结构,假设总熵不变 d S = 0 {\displaystyle dS=0} ,根据热力学第二定律 d S i 0 {\displaystyle dS_{i}\geq 0} ,因此可得

在系统及控制理论中,耗散系统是满足“耗散不等式”的动力系统,假设其状态、输入及输出分别为 x ( t ) {\displaystyle x(t)} u ( t ) {\displaystyle u(t)} y ( t ) {\displaystyle y(t)}

假设一个函数 w = u y {\displaystyle w=u\cdot y} ,其针对任何输入 u {\displaystyle u} 及初始状态 x ( 0 ) {\displaystyle x(0)} ,在任意有限时间内的积分都为有限值,将此函数称为供应率函数,则一个系统为耗散系统的条件是存在一个连续的非负函数 V ( x ) {\displaystyle V(x)} (称为储存函数),使得针对任意输入 u {\displaystyle u} 及初始状态 x ( 0 ) {\displaystyle x(0)} ,以下的不等式(耗散不等式)都成立:

耗散系统的耗散不等式也可以表示为以下的形式:

物理的解释可将 V ( x ) {\displaystyle V(x)} 视为是系统的能量,而 u y {\displaystyle u\cdot y} 是单位时间输入系统的能量。

此表示方式和李雅普诺夫稳定性有很强的关系,在系统有特定可控制性及可观察性的条件时,储存函数可以作为李雅普诺夫函数。

简单来说,耗散理论可以用来设计线性及非线性系统的回授控制。耗散系统理论是由V.M. Popov、J.C. Willems、D.J. Hill 及P. Moylan等学者提出。对于线性非时变系统,耗散系统即为正实转移函数,而且Kalman–Yakubovich–Popov引理可以联系正实系统的相空间及频域相关特性。由于耗散理论在应用上的重要性.其仍为系统及控制研究的热门领域之一。

量子力学及其他以哈密顿力学为基础的经典动态系统,具有时间可逆转性(英语:Time reversibility),其本质无法描述耗散系统。理论上可以将系统进行弱耦合,以谐振子为例,可以将许多处于热平衡,但频率各自不同的谐振子视为一个整体,整体有很宽的频谱,记录整体平均的情形。会得到一个主方程,是林德布劳德方程(英语:Lindblad equation)的特例,而林德布劳德方程可视为刘维尔定理的量子力学版本。

相关

  • 红十字国际红十字与红新月运动(法语:Le Mouvement Croix-Rouge et Croissant-Rouge;英语:International Red Cross and Red Crescent Movement;德语:Internationle Rotkreuz- und Rothal
  • 阿提拉阿提拉(拉丁语:Attila,406年9月2日-453年4月30日),一译亚提拉,古代欧亚大陆匈人最为人熟知的领袖和单于,史学家称之为“上帝之鞭”(scourge of God),曾多次率领大军入侵东罗马帝国及西
  • 狐狼胡狼,又名狐狼或豺狼,是分布在非洲、亚洲及欧洲东南的三种(有时四种)犬科动物。胡狼与北美洲的郊狼有相似的生态位,专门捕猎细小至中等的动物。它们的脚长,犬齿弯曲,适合猎食细小哺
  • 中国国家基因库坐标:22°35′25.17″N 114°27′36.78″E / 22.5903250°N 114.4602167°E / 22.5903250; 114.4602167深圳国家基因库(China National GeneBank,简称CNGB),位于深圳市大鹏新区观
  • 压缩压缩可指:
  • 岸(又称滨),分为海岸、湖岸及河岸,是在水面和陆地接触处,经波浪、潮汐、海流等作用下形成的滨水地带,其中有众多沉积物堆积而形成的岸称为滩。可分为岩岸与沙岸。沙岸海岸线平直而
  • 夜间阴茎勃起夜间阴茎勃起(Nocturnal penile tumescencea,简称NPT),俗称晨间勃起(晨勃),为阴茎在睡眠中或刚睡醒时的自发性勃起反应。所有没有勃起障碍的男性都有经历过晨间勃起,一般来说一晚会
  • 袁宏道《雅集图》之袁宏道像,明·陈洪绶绘现藏于上海博物馆袁宏道(1568年-1610年),字中郎,号石公,明朝湖北省公安县人,知名文学家。与兄袁宗道、弟袁中道并有才名,人称“三袁”,世以为宏道是
  • 霞浦坐标:26°53′N 120°00′E / 26.883°N 120.000°E / 26.883; 120.000户籍人口:54.86万 常住人口:46.8万霞浦县是福建省宁德市辖县,建城1700余年,是闽东最古老的县份,闽东文化
  • 朝鲜劳动党委员长朝鲜劳动党委员长(朝鲜语:조선로동당 위원장/朝鮮勞動黨 委員長),是朝鲜的唯一执政党朝鲜劳动党最高领导人的职称。该头衔于2016年5月6日在平壤举行的朝鲜劳动党第七次代表大会中