耗散系统

✍ dations ◷ 2025-05-17 19:03:13 #热力学,统计力学,非线性物理学,非平衡态热力学

耗散系统(Dissipative system)是指远离热力学平衡状态的开放系统,此系统和外环境交换能量、物质和熵而继续维持平衡,对这种结构的研究,解释了自然界许多以前无法解释的现象。

耗散结构一词由比利时物理学家、化学家伊里亚·普里高津发明。普里高津创立了耗散结构理论,研究一个系统从混沌无序向有序转化的机理、条件和规律的科学,他为此曾获1977年诺贝尔化学奖。

常见的耗散结构包括对流、气旋、热带气旋及生物体。像镭射、瑞利–贝纳尔对流(英语:Rayleigh–Bénard convection)及B-Z反应也是耗散结构的例子。

耗散结构的特点是自发生的对称性破缺(各向异性)以及复杂,甚至混沌的结构。普里高津考虑的耗散结构有其动态的机制,因此可以视为热力学上的稳态,有时也可以用适当的非平衡热力学中的极值定理(英语:extremal principles in non-equilibrium thermodynamics)来描述。

以前的物理理论认为,只有能量最低时,系统最稳定,否则系统将消耗能量,产生熵,而使系统不稳定。耗散结构理论认为在高能量的情况下,开放系统也可以维持稳定。例如生物体,以前按照热力学定律,是一种极不稳定的结构,不断地产生熵而应自行解体,但实际是反而能不断自我完善。其实生物体是一种开放结构,不断从环境中吸收能量和物质,而向环境放出熵,因而能以破坏环境的方式保持自身系统的稳定。城市也是一种耗散结构。

牛顿的万有引力描述的是无始无终按规律运行的美好世界,而热力学第二定律描述的是一切终将走向灭亡的热寂,相较之下,耗散结构描述在远离平衡态的开放系统中“生”的机制,但其先决假定条件是存在提供能量、物质,并且可以交换熵的外环境。

一开放系统的熵变化可以表示如下:

熵变化可以分解为系统内( d S i {\displaystyle \,dS_{i}} )及系统外的( d S e {\displaystyle \,dS_{e}} ,和环境交换的熵)。

在封闭系统中系统无法和环境交换熵,因此( d S = d S i {\displaystyle dS=dS_{i}} ),根据热力学第二定律 d S i 0 {\displaystyle dS_{i}\geq 0} (等号成立时表示平衡),因此 d S 0 {\displaystyle dS\geq 0}

不过在开放系统中,系统可以和环境交换熵,因此可以形成一个稳态的结构,假设总熵不变 d S = 0 {\displaystyle dS=0} ,根据热力学第二定律 d S i 0 {\displaystyle dS_{i}\geq 0} ,因此可得

在系统及控制理论中,耗散系统是满足“耗散不等式”的动力系统,假设其状态、输入及输出分别为 x ( t ) {\displaystyle x(t)} u ( t ) {\displaystyle u(t)} y ( t ) {\displaystyle y(t)}

假设一个函数 w = u y {\displaystyle w=u\cdot y} ,其针对任何输入 u {\displaystyle u} 及初始状态 x ( 0 ) {\displaystyle x(0)} ,在任意有限时间内的积分都为有限值,将此函数称为供应率函数,则一个系统为耗散系统的条件是存在一个连续的非负函数 V ( x ) {\displaystyle V(x)} (称为储存函数),使得针对任意输入 u {\displaystyle u} 及初始状态 x ( 0 ) {\displaystyle x(0)} ,以下的不等式(耗散不等式)都成立:

耗散系统的耗散不等式也可以表示为以下的形式:

物理的解释可将 V ( x ) {\displaystyle V(x)} 视为是系统的能量,而 u y {\displaystyle u\cdot y} 是单位时间输入系统的能量。

此表示方式和李雅普诺夫稳定性有很强的关系,在系统有特定可控制性及可观察性的条件时,储存函数可以作为李雅普诺夫函数。

简单来说,耗散理论可以用来设计线性及非线性系统的回授控制。耗散系统理论是由V.M. Popov、J.C. Willems、D.J. Hill 及P. Moylan等学者提出。对于线性非时变系统,耗散系统即为正实转移函数,而且Kalman–Yakubovich–Popov引理可以联系正实系统的相空间及频域相关特性。由于耗散理论在应用上的重要性.其仍为系统及控制研究的热门领域之一。

量子力学及其他以哈密顿力学为基础的经典动态系统,具有时间可逆转性(英语:Time reversibility),其本质无法描述耗散系统。理论上可以将系统进行弱耦合,以谐振子为例,可以将许多处于热平衡,但频率各自不同的谐振子视为一个整体,整体有很宽的频谱,记录整体平均的情形。会得到一个主方程,是林德布劳德方程(英语:Lindblad equation)的特例,而林德布劳德方程可视为刘维尔定理的量子力学版本。

相关

  • 美罗培南美罗培南(英语:Meropenem),或译美洛培南,是一种有非常广泛抗菌性及可供注射的抗生素,用于治疗多种不同的感染,包括脑膜炎及肺炎。它是一种β内酰胺类抗生素,属于碳青霉烯的分类下。
  • 内耳性眩晕病美尼尔氏综合症(Ménière's disease)是内耳的疾病,其症状是会突然眩晕、耳鸣、听力减损,而且耳朵有肿胀感。最典型的症状是一开始只有单侧耳朵有症状,不过后来可能双耳都受到影
  • 电子游戏电子游戏产业(英语:Video game industry),又称互动娱乐产业(Interactive entertainment industry),是涉及电子游戏的开发、市场营销和销售的经济领域。它包含了几十种职业,目前雇用
  • 高血钙高血钙(Hypercalcaemia)是指血液中的钙离子(Ca2+)过高的疾病。人体一般血钙浓度在2.1–2.6 mmol/L (8.8–10.7 mg/dL, 4.3–5.2 mEq/L),若浓度高于2.6 mmol/L,就是高血钙。轻度高
  • 新观察家《新观察家》(法语:Le Nouvel Observateur,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Co
  • 凝华凝华(英语:deposition)是指一种物质从气态不经过液态直接转化为固态的过程,是物质在温度和气压低于三相点的时候发生的物态变化。凝华是放热反应。常见的例子有结霜。与凝华相反
  • 路环路环(葡萄牙语:Coloane)古称盐湾、盐灶湾、九澳岛或阿婆尾,因东北角之九澳湾与岛上九澳山而得名。此外,路环的葡文名称,有人认为是音译自该岛的粤语古称“过路湾”。现在是澳门的
  • 悬链线悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数, a
  • 泸溪泸溪县位于湖南省湘西土家族苗族自治州东南,县治所位于:武溪镇,面积1569平方公里,国产值总量为77001万元(公元2003年),人口31.4万(2015年第六次人口普查,含外来人口,不包括外出人口),是
  • 秦末民变秦末民变(前209年七月-前207年十月)指中国秦朝末年群雄起兵反秦之战争,又称秦末农民战争或秦末农民起义。秦灭楚后楚地流行“楚虽三户,亡秦必楚”之说。秦始皇死后一年,陈胜、吴广