勾股定理

✍ dations ◷ 2025-10-23 15:55:26 #三角学,几何定理,中国数学史,角,三角形几何,使用过时的math标签格式的页面

勾股定理(英语:Pythagorean theorem)是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一。

此定理又称勾股定理、商高定理、新娘座椅定理或百牛定理。“毕氏”所指的是其中一个发现这个定理的古希腊数学家毕达哥拉斯,但历史学家相信这个定理早在毕达哥拉斯出生的一千年前已经在世界各地广泛应用。不过,现代西方数学界统一称呼它为“毕达哥拉斯定理”。

《周髀算经》记述公元前一千多年,商高以 ( 3 , 4 , 5 ) {\displaystyle (3,4,5)} 一书中总共提到367种证明方式。

有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

中国三国时期赵爽为证明勾股定理作“勾股圆方图”即“弦图”,按其证明思路,其法可涵盖所有直角三角形,为东方特色勾股定理无字证明法。2002年第24届国际数学家大会(ICM)在北京召开。中国邮政发行一枚邮资明信片,邮资图就是这次大会的会标—中国古代证明勾股定理的赵爽弦图。

中国魏晋时期数学家刘徽依据其“割补术”为证勾股定理另辟蹊径而作“青朱出入图”。刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再进行割补—以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。

有许多勾股定理的证明方式,都是基于相似三角形中两边长的比例。

A B C {\displaystyle ABC} 画上三角形的高,并将此高与 A B ¯ {\displaystyle {\overline {AB}}} 相似,因为在两个三角形中都有一个直角(这又是由于“高”的定义),而两个三角形都有 A {\displaystyle A} 为直角。从点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在定理的证明中,我们需要如下四个辅助定理:

证明的思路为:把上方的两个正方形,透过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。

其证明如下:

此证明是于欧几里得《几何原本》一书第1.47节所提出的

由于这个定理的证明依赖于平行公理,而且从这个定理可以推出平行公理,很多人质疑平行公理是这个定理的必要条件,一直到十九世纪尝试否定第五公理的非欧几何出现。

此证明以图形重新排列证明。两个大正方形的面积皆为 ( a + b ) 2 {\displaystyle (a+b)^{2}} 。把四个相等的三角形移除后,左方余下面积为 a 2 + b 2 {\displaystyle a^{2}+b^{2}} ,右方余下面积为 c 2 {\displaystyle c^{2}} ,两者相等。证毕。


勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中 A B ¯ = c {\displaystyle {\overline {AB}}=c} 为最长边:

(这个逆定理其实只是余弦定理的一个延伸)

勾股定理的逆定理的证法数明显少于勾股定理的证法。以下是一些常见证法。

构造 A B C {\displaystyle \triangle A'B'C'} ,使 a = a , b = b , C = 90 o {\displaystyle a'=a,b'=b,\angle C'=90^{\operatorname {\mathrm {o} } }}

根据勾股定理, c = a 2 + b 2 = a 2 + b 2 = c {\displaystyle c'={\sqrt {a'^{2}+b'^{2}}}={\sqrt {a^{2}+b^{2}}}=c} ,从而 A B C A B C ( S S S ) {\displaystyle \triangle A'B'C'\cong \triangle ABC(SSS)}

因此, C = 90 o {\displaystyle \angle C=90^{\operatorname {\mathrm {o} } }}

根据余弦定理, cos C = a 2 + b 2 c 2 2 a b {\displaystyle \cos C={\frac {a^{2}+b^{2}-c^{2}}{2ab}}} 。由于 a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}\,} ,故 cos C = 0 {\displaystyle \cos C=0\,} ,从而 C = 90 o {\displaystyle \angle C=90^{\operatorname {\mathrm {o} } }}

A B ¯ {\displaystyle {\overline {AB}}} 边上截取点 D {\displaystyle D} 使 D C B = A {\displaystyle \angle DCB=\angle A}

C D B {\displaystyle \triangle CDB\,} A C B {\displaystyle \triangle ACB\,} 中,

从而, B C ¯ B A ¯ = B D ¯ B C ¯ B D ¯ = a 2 c {\displaystyle {\frac {\overline {BC}}{\overline {BA}}}={\frac {\overline {BD}}{\overline {BC}}}\Rightarrow {\overline {BD}}={\frac {a^{2}}{c}}} ,以及 C D ¯ A C ¯ = C B ¯ A B ¯ C D ¯ = a b ¯ c {\displaystyle {\frac {\overline {CD}}{\overline {AC}}}={\frac {\overline {CB}}{\overline {AB}}}\Rightarrow {\overline {CD}}={\frac {\overline {ab}}{c}}}

另一方面, A D ¯ = A B ¯ B D ¯ = c a 2 c = b 2 c {\displaystyle {\overline {AD}}={\overline {AB}}-{\overline {BD}}=c-{\frac {a^{2}}{c}}={\frac {b^{2}}{c}}} ,故由 D C ¯ A D ¯ = B C ¯ A C ¯ = B D ¯ C D ¯ = a b {\displaystyle {\frac {\overline {DC}}{\overline {AD}}}={\frac {\overline {BC}}{\overline {AC}}}={\frac {\overline {BD}}{\overline {CD}}}={\frac {a}{b}}} 知, A C D C B D {\displaystyle \triangle ACD\sim \triangle CBD}

因而, B D C = C D A = 90 o {\displaystyle \angle BDC=\angle CDA=90^{\operatorname {\mathrm {o} } }} ,所以 A C B = C D B = 90 o {\displaystyle \angle ACB=\angle CDB=90^{\operatorname {\mathrm {o} } }}

勾股定理是由欧几里得几何的公理推导出来的,其在非欧几里得几何中是不成立的。因为勾股定理的成立涉及到了平行公设。

正弦 · 余弦 · 正切 · 余切 · 正割 · 余割

反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割

正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数

正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理

三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • 蔓越莓蔓越橘(英语:Cranberry),又称蔓越莓、小红莓,是杜鹃花科越橘属红莓苔子亚属(学名:拉丁语:Oxycoccus),又名毛蒿豆亚属的俗称,此亚属的物种均为常绿灌木,主要生长在北半球气候较清凉的温带
  • 我妹是恶魔《亲密姐妹》(日语:ディア♥シスター,英语:Dear, Sister),为日本富士电视台从2014年10月16日开始于周四剧场(JST 22:00 - 22:54)播出的连续剧,由石原聪美、松下奈绪主演。天真烂漫、
  • 逊清皇室流亡小朝廷逊清皇室流亡小朝廷,是指1924年11月5日清逊帝溥仪被驱逐出紫禁城,为时12年的逊清皇室小朝廷统治遂告终结,溥仪在大清皇帝尊号被正式废除后,依旧被部分满清遗老旧臣尊为皇帝,在北
  • 铁岭铁岭市是中华人民共和国辽宁省下辖的地级市,位于辽宁省北部,松辽平原中段。地处东经123°27' ~ 125°06',北纬41°59' ~ 43°29' 之间。南与沈阳市、抚顺市毗邻,北与吉林省四平市
  • 伯米吉州立大学伯米吉州立大学(英语:Bemidji State University)是一所位于美国明尼苏达州伯米吉的公立大学,这所大学位于伯米吉湖的岸边。这所大学设立于公元1919年,当时名为伯米吉州立师范学校
  • FS作战东南亚地区:缅甸:西南太平洋地区:北美地区:日本:满洲地区:FS作战为大日本帝国在第二次世界大战的太平洋战争中曾计划进攻并侵占斐济、萨摩亚和新喀里多尼亚的作战的代号。该作战原
  • 瑞典解放战争瑞典解放战争,也被称为古斯塔夫瓦萨的叛乱和瑞典的分裂战争,是一场叛乱和内战,瑞典贵族古斯塔夫·瓦萨成功地废黜克里斯蒂安二世,导致卡尔马联合解体。1520年11月,卡尔马联合君主
  • 宋克宋克可以是下列人物:
  • 火线勇气《火线勇气》(英语:)是一部在1996发行的美国电影,电影由爱德华·兹维克执导,并且邀请了丹佐·华盛顿、梅格·莱恩、路戴蒙·菲利浦(Lou Diamond Phillips)和麦特·戴蒙等人主演。内
  • 寺内崇幸寺内崇幸(1983年5月27日 -),日本棒球员,读卖巨人队选手,栃木县栃木市出身,守备位置是内野手。74 村田善则 | 75 村田修一 | 77 元木大介 | 79 相川亮二 | 81 宫本和知 | 85 杉内俊