可变参数模板
✍ dations ◷ 2025-05-20 05:57:36 #C++,计算机编程
可变参数模板是模板编程时,模板参数(template parameter)的个数可变的情形。
已经支持可变参数模板的编程语言有D语言与C++(自C++11标准)。
C++11之前,模板(类模板与函数模板)在声明时必须有 固定数量的模板参数。C++11允许模板定义有任意类型任意数量的模板参数。
例如,STL的类模板tuple可以有任意个数的类型名(typename)作为它的模板形参(template parameter):
template<typename... Values> class tuple;
如实例化为具有3个类型实参(type argument):
tuple<int, std::vector<int>, std::map<<std::string>, std::vector<int>>> some_instance_name;
也可以有0个实参,如 tuple<> some_instance_name;
也是可以的。
如果不希望可变参数模板有0个模板实参,可以如下声明:
template<typename First, typename... Rest> class tuple;
可变参数模板也适用于函数模板,这不仅给可变参数函数(variadic functions,如printf)提供了类型安全的附加机制(add-on),还允许类似printf的函数处理不平凡对象。例如:
template<typename... Params> void printf(const std::string &str_format, Params... parameters);
用途
省略号(...)在可变参数模板中有两种用途:
具体例子见下文。实际上,能够接受可变参数个数的参数包展开的场合,必须是能接受任意个数的逗号分隔开的表达式列表,这也就是上述几种场合。
可变参数模板可递归使用。可变模板参数自身并不可直接用于函数或类的实现。例如,printf的C++11可变参数的替换版本实现:
void printf(const char *s) //已经没有额外的参数了,这里将要耗尽字符串s{ while (*s) { if (*s == '%') { if (*(s + 1) == '%') { ++s; } else { throw std::runtime_error("invalid format string: missing arguments"); } } std::cout << *s++; }}template<typename T, typename... Args>void printf(const char *s, T value, Args... args) //处理一对: (格式指示符,值参数){ while (*s) { if (*s == '%') { if (*(s + 1) == '%') { ++s; } else { std::cout << value; printf(s + 1, args...); // call even when *s == 0 to detect extra arguments return; } } std::cout << *s++; } throw std::logic_error("extra arguments provided to printf");}
这是一个递归实现的模板函数。注意这个可变参数模板实现的printf调用自身或者在args...为空时调用基本实现版本。
没有简单机制去在可变模板参数的每个单独值上迭代。几乎没有什么方式可以把参数包转为单独实参来使用。通常这靠函数重载,或者当函数可以每次捡出一个实参时用哑扩展标记(dumb expansion marker):
#include <iostream> template<typename type>type print(type param){ std::cout<<param<<' '; return param;}template<typename... Args> inline void pass(Args&&...) {}template<typename... Args> inline void expand(Args&&... args) { pass( print(args)... );}int main(){ expand(42, "answer", true);}
上例中的"pass"函数是必须的,因为参数包用逗号展开后只能作为被逗号分隔开的一组函数调用实参,而不是作为逗号运算符,从而"pass"函数所能接受的调用实参个数必须是可变的,也即"pass"函数必须是可变参数函数。print(args)...;
编译不能通过。 此外,上述办法要求print
的返回类型不能是void;且所有对print的调用在一个非确定的顺序,因为函数实参求值的顺序是不确定的。如果要避免这种不确定的顺序,可以用大括号封闭的初始化器列表(initializer list),这保证了严格的从左到右的求值顺序。为避免void返回类型带来的麻烦,使用逗号运算符使得每个扩展元素总是返回1。例如:
#include <iostream>template<typename T> void some_function(T value){ std::cout<<value<<' ';}template<typename... Args> inline void expand(Args&&... args) { int arr{(some_function(args),1 )...}; std::cout<<std::endl<<sizeof(arr)/sizeof(int); //也可以用sizeof...(Args)运算符}int main(){ expand(42, "answer", true);}
另一种方法使用重载函数的递归的终结版("termination versions")函数。这更为通用,但要求更多努力写更多代码。一个函数要求某种类型的实参与参数包。另一个函数没有参数。如下例:
int func() {} // termination versiontemplate<typename Arg1, typename... Args>int func(const Arg1& arg1, const Args&... args){ process( arg1 ); func(args...); // note: arg1 does not appear here!}
如果args...包含至少一个实参,则将调用第二个版本的函数;如果参数包为空将调用第一个“终结”版的函数。
可变参数模板可用于异常规范(exception specification)、基类列表(base class list)、构造函数初始化列表(constructor's initialization list)。例如:
template <typename... BaseClasses> class ClassName : public BaseClasses... {public: ClassName (BaseClasses&&... base_classes) : BaseClasses(base_classes)... {}};
这个例子中的解包算子将复制所有模板参数类型为ClassName
的基类型。构造函数取每个基类的引用,并初始化每个基类。
对于函数模板,可变模板参数可以转发(forward)。当与右值引用结合使用,这允许完美转发(perfect forwarding):
template<typename TypeToConstruct> struct SharedPtrAllocator { template<typename ...Args> std::shared_ptr<TypeToConstruct> construct_with_shared_ptr(Args&&... params) { return std::shared_ptr<TypeToConstruct>(new TypeToConstruct(std::forward<Args>(params)...)); }};
上例中,实参列表被解包给TypeToConstruct的构造函数。std::forward<Args>(params)
的句法是以适当的类型转发实参。解包算子将把转发语法应用于每个参数。
模板参数包中实参的个数可以如下确定:
template<typename ...Args> struct SomeStruct { static const int size = sizeof...(Args);};
例如SomeStruct<Type1, Type2>::size
为2,SomeStruct<>::size
为0。需要注意,sizeof...
与sizeof
是两个不同的运算符。
Lambda捕获例子:
template<class ...Args>void f(Args... args) { auto lm = { return g(args...); }; lm();}
编译器实现
GCC尚不支持lambda表达式包含为展开的参数包,因此下述语句编译不通过:
int arr{({ std::cout << args << std::endl; }(), 1)...};
Visual C++ 2013支持上述风格的语句。当然,这里的lambda函数不是必需的,通常的表达式即可:
int arr{(std::cout << args << std::endl, 1)...};
例子
下述代码实现了C++14引入的make_integer_sequence函数模板。它产生一个模板类,其模板参数为0,1,2,...,N。可用于生成或访问std::tuple
#include <iostream> // using aliases for cleaner syntax template<unsigned...> struct seq { using type = seq; };template<class S1, class S2> struct concat;template<unsigned... I1, unsigned... I2>struct concat<seq<I1...>, seq<I2...>> : seq<I1..., (sizeof...(I1) + I2)...> {};template<unsigned N>struct make_integer_sequence : concat<typename make_integer_sequence<N / 2>::type, typename make_integer_sequence<N - N / 2>::type>::type {};template<> struct make_integer_sequence<1> : seq<0> {};int printItem(unsigned k){ std::cout << k << ' '; return 0;}template<unsigned... I1>void printTemplate(seq<I1...> a){ int nn = { printItem(I1)... };}int main(){ make_integer_sequence<10> a; printTemplate(a);}
输出为
0 1 2 3 4 5 6 7 8 9
参见
更多文章关于可变参数结构而非模板:
相关
- 候鸟鸟类迁徙是鸟类随着季节变化进行的,方向确定的,有规律的和长距离的迁居活动。在动物界中,类似的活动非常常见,对昆虫则称为“迁飞”,对鱼类则称为“洄游”,对哺乳动物则称为“迁移
- 贺 林贺林(1953年7月-)是一位中国遗传生物学家,上海交通大学教授。1953年出生于北京,1986年于南京铁道医学院(现东南大学医学院)获硕士学位,1991年于英国佩士来大学获理学博士学位。现任
- 微星微星科技(Micro-Star International Co., Ltd.,缩写MSI,台证所:2377),台湾电子零组件制造商及品牌,总部位于台湾新北市中和区。早期以主板、显卡为主要产品,近年切入电竞电脑,于高端
- 赫拉德茨-克拉洛韦州赫拉德茨-克拉洛韦州(捷克语:Královéhradecký kraj),是捷克的一个州,历史上属于波希米亚的东北部。面积5,768 平方公里,人口548,368(2006年)。首府赫拉德茨-克拉洛韦。下分五区
- 语言改革语言改革的目的是改造一种语言,属于语言工程的一种。语言改革常用的方法是简化和净化。简化是通过规范词汇和语法使得语言变得更简单易用。净化则是使得语言变得更“纯粹”。
- 2014年国际足联世界杯外围赛 – 欧洲区B组2014年世界杯外围赛欧洲区B组(英语:2014 FIFA World Cup qualification UEFA Group B)是2014年世界杯欧洲赛区外围赛的一个分组,包括意大利、丹麦、捷克、保加利亚、亚美尼亚及
- 萨曼莎·史密斯萨曼莎·里德·史密斯(英语:Samantha Reed Smith,1972年6月29日-1985年8月25日)是一名美国学生和儿童演员,家住缅因州曼彻斯特镇(英语:Manchester, Maine),在冷战中的美国和苏联以和平
- 利亚内斯利亚内斯(西班牙语:Llanes),是西班牙阿斯图里亚斯的一个市镇。总面积264平方公里,总人口13276人(2001年),人口密度50人/平方公里。
- 天主教夏延教区天主教夏延教区(拉丁语:Diocesis Cheyennensis、英语:Roman Catholic Diocese of Cheyenne)是美国一个罗马天主教教区,属丹佛总教区。成立于1887年8月2日。范围包括怀俄明州全州,
- 快速傅里叶变换快速傅里叶变换(英语:Fast Fourier Transform, FFT),是快速计算序列的离散傅里叶变换(DFT)或其逆变换的方法。傅里叶分析将信号从原始域(通常是时间或空间)转换到频域的表示或者逆过