若斯叻吸引子

✍ dations ◷ 2025-04-04 11:16:57 #非线性常微分方程,混沌理论

若斯叻吸引子(Rössler attractor)是一组三元非线性微分方程:

d x ( t ) d t = y ( t ) z ( t ) {\displaystyle {\frac {dx(t)}{dt}}=-y(t)-z(t)}

d y ( t ) d t = x ( t ) + a y ( t ) {\displaystyle {\frac {dy(t)}{dt}}=x(t)+a*y(t)}

d z ( t ) d t = b c z ( t ) + x ( t ) z ( t ) {\displaystyle {\frac {dz(t)}{dt}}=b-c*z(t)+x(t)*z(t)}

若斯叻方程没有解析解,但可利用龙格-库塔法求数值解并做图。


相关

  • 詹姆斯·格利姆詹姆斯·吉尔伯特·格利姆(英语:James Gilbert Glimm,1934年3月24日-),美国数学家,美国数学学会前主席,石溪大学杰出教授。
  • 美国食品药品管理局美国食品药品监督管理局(英语:U.S. Food and Drug Administration,缩写为FDA)为美国卫生与公众服务部直辖的联邦政府机构,其主要职能为负责对美国国内生产及进口的食品、膳食补充
  • 桔梗科桔梗科包括84属大约2380种,一般为多年生草本或灌木,也有一些种是小乔木,一般茎叶折断后都会流出无毒的白色乳汁。桔梗科植物主要分布在北半球,但在南部非洲也有许多种类。中国有
  • 安道尔侯国安道尔公国(加泰罗尼亚语:Principat d'Andorra),也译作安道拉亲王国,通称安道尔,为一微型国家,国土面积468平方千米。是西南欧的内陆亲王国,位于比利牛斯山脉东南部,毗邻法国和西班牙
  • 巴西整合运动巴西整合运动(葡萄牙语:Ação Integralista Brasileira)是一个巴西极右翼党派,由普利尼奥·萨尔加多创建,并遵循普利尼奥·萨尔加多所创立之整合主义思想。巴西整合运动倡导巴西
  • 鼠尾鳕科鼠尾鳕科为辐鳍鱼纲鳕形目的其中一科。鼠尾鳕科下分37个属,如下:
  • 克里斯·纽曼克里斯·纽曼(英语:Chris Newman)是一个电影混音师(英语:production sound mixer)和导演。他的电影代表作包括、、、和。纽曼曾获得过3次奥斯卡最佳音响效果奖,并在此奖项上获得过5
  • 理科太太理科太太(1987年4月23日-),本名陈映彤(Evelyn Chen),台湾台北出生,现居台北与美国硅谷两地。母亲为化妆品公司老板。原本是一名生物医学工程师,与在美国长大、担任药剂师的先生John结
  • 清辨清辨(梵语:Bhavyaviveka),又译为清辩,音译为婆维耶毗吠伽、婆毘吠伽,意译为明辨、分别明,六世纪时,南印度佛教中观派论师,复兴了龙树中观学,开创中观自续派(英语:Svatantrika)。清辨为六
  • 默莉·顾斯劳默莉·顾斯劳(印尼语:Melly Goeslaw,1974年1月7日-),本名Mellyana Goeslaw Hoed,印尼创作型女歌手,曾演唱Gantung等歌曲。