自相关(英语:Autocorrelation),也叫序列相关,是一个信号于其自身在不同时间点的互相关。非正式地来说,它就是两次观察之间的相似度对它们之间的时间差的函数。它是找出重复模式(如被噪声掩盖的周期信号),或识别隐含在信号谐波频率中消失的基频的数学工具。它常用于信号处理中,用来分析函数或一系列值,如时域信号。
自相关函数在不同的领域,定义不完全等效。在某些领域,自相关函数等同于自协方差。
将一个有序的随机变量序列与其自身相比较,这就是自相关函数在统计学中的定义。每个不存在相位差的序列,都与其自身相似,即在此情况下,自相关函数值最大。如果序列中的组成部分相互之间存在相关性(不再是随机的),则由以下相关值方程所计算的值不再为零,这样的组成部分为自相关。
所得的自相关值R的取值范围为,1为最大正相关值,-1则为最大负相关值,0为不相关。
在信号处理中,上面的定义通常不进行归一化,即不减去均值并除以方差。当自相关函数由均值和方差归一化时,有时会被称作自相关系数。
给定一个信号 函数: