波包

✍ dations ◷ 2024-12-23 00:31:14 #波包
在任意时刻,波包(wave packet)是局限在空间的某有限范围区域内的波动,在其他区域的部分非常微小,可以被忽略。波包整体随着时间流易移动于空间。波包可以分解为一组不同频率、波数、相位、波幅的正弦波,也可以从同样一组正弦波构成;在任意时刻,这些正弦波只会在空间的某有限范围区域相长干涉,在其它区域会相消干涉。:53-56:312-313描绘波包轮廓的曲线称为包络线。依据不同的演化方程,在传播的时候,波包的包络线(描绘波包轮廓的曲线)可能会保持不变(没有色散),或者包络线会改变(有色散)。在量子力学中,波包可以用来代表粒子,表示粒子的概率波;也就是说,表现于位置空间,波包在某时间、位置的波幅平方,就是找到粒子在那时间、位置的概率密度;在任意区域内,波包所囊括面积的绝对值平方,就是找到粒子处于那区域的概率。粒子的波包越狭窄,则粒子位置的不确定性越小,而动量的不确定性越大;反之亦然。这位置的不确定性和动量的不确定性,两者之间无可避免的关系,是不确定性原理的一个标准案例。:53-56描述粒子的波包满足薛定谔方程,是薛定谔方程的数学解。通过含时薛定谔方程,可以预测粒子随着时间演化的量子行为。这与在经典力学里的哈密顿表述很类似。:123早在十七世纪,艾萨克·牛顿就提出了光微粒说,即光是由很多离散的粒子所构成,其中每一个粒子都遵守牛顿运动定律。他的主要反对者罗伯特·胡克、克里斯蒂安·惠更斯则主张光波动说:光是一种传播于介质中的波动。十九世纪,物理学者发现,在许多实验中,光表现出波动行为。其中一个特别着名的实验是双缝实验,这是英国物理学者托马斯·杨于1801年完成的实验。从这实验观察到的干涉图样给予光微粒说严重打击,因为光微粒说无法说明这现象,而光波动说可以。很多物理学者因此改变立场,采纳了光波动说。在20世纪初,科学家发现经典力学存在着很多严峻问题,越来越多实验结果无法用经典理论来解释。到了1930年代,物理学者开始采纳波粒二象性,即物质具有波动性与粒子性。在这段时期,量子力学如火如荼的发展造成了理论方面的重大突破。许多困惑物理学者多年的实验结果,都能够得到圆满合理的解释。例如,1905年,阿尔伯特·爱因斯坦对光电效应的理论解析。按照爱因斯坦的理论解析,光的能量并非均匀分布,而是负载于离散的量子包,现称为光子。每个光子的能量 E {displaystyle E} 与频率 ν {displaystyle nu } 之间的关系为其中, h {displaystyle h} 是普朗克常数。在光电效应里,光子的频率必须超过被冲击金属的特征极限频率(对应于金属的逸出功),才能使金属表面的电子获得足够能量逃逸出来,否则,不论辐照率有多高,都无法使得电子从金属表面逃逸出来。二十世纪,量子力学持续地蓬勃发展。它所展现的绘景是一种粒子世界。在这粒子世界里,每一种物质都是由粒子形成,每一种现象都是由粒子彼此互相作用而产生;可是,这些粒子的量子行为都是用概率波来描述。所有的量子行为都被约化为这些概率波的演化。至今,量子世界的粒子性已被许多实验证实,波动现象可以被诠释为粒子的波包秉性的特征后果。举一个非色散传播范例,思考波动方程:其中, u {displaystyle u} 是波动函数, t {displaystyle t} 是时间, v {displaystyle v} 是波动在某介质里的传播速度。采用物理时间常规 e − i ω t {displaystyle e^{-iomega t}} ,波动方程的平面波解是其中, x {displaystyle mathbf {x} } 是位置矢量, k {displaystyle mathbf {k} } 是波数矢量, ω {displaystyle omega } 是角频率。为了满足平面波为波动方程的解,角频率和波数的色散关系为为了便于计算,只考虑波传播于一维空间,则波动方程的一般解是其中,方程右边的第一项表示往正 x {displaystyle x} 方向传播的波动,第二项表示往负 x {displaystyle x} 方向传播的波动。波包是在局部区域里一组波的叠加。假若,波包是强劲存在于局部区域,则需要更多的频率来达成局部区域内的相长叠加,与局部区域外的相消叠加。这样,从基本平面波解,一般的波包可以表示为其中,因子 1 / 2 π {displaystyle 1/{sqrt {2pi }}} 是由傅里叶变换的常规而设定,振幅 A ( k ) {displaystyle A(k)} 是线形叠加的系数函数。逆反过来,系数函数可以表达为其中, u ( x , 0 ) {displaystyle u(x,,0)} 是波包在初始时间 t = 0 {displaystyle t=0} 的函数形式。所以,知道波包在时间 t = 0 {displaystyle t=0} 的函数形式 u ( x , 0 ) {displaystyle u(x,,0)} ,应用傅里叶变换,可以计算出波包在任何时间的函数形式 u ( x , t ) {displaystyle u(x,,t)} 。例如,选择初始时间的函数形式为经过一番运算,可以得到这个波包的实值部分或虚值部分的非散色传播展示于前面动画。再举一个有色散传播例子,思考薛定谔方程,其色散关系为只考虑一维问题。经过一番运算,满足初始条件 u ( x , 0 ) = e − x 2 + i k 0 x {displaystyle u(x,,0)=e^{-x^{2}+ik_{0}x}} 的解是观察这波包的色散行为。取 u ( x , t ) {displaystyle u(x,,t)} 的绝对值,这色散波包传播的群速度是常数 k 0 {displaystyle k_{0}} 。波包的宽度跟时间有关,根据公式 ( 1 + 4 t 2 ) 1 / 2 {displaystyle (1+4t^{2})^{1/2}} 随着时间增加。

相关

  • 漱口药水漱口水,又称为口腔漱洗液,是口腔卫生产品,具有杀除微生物牙垢的功能,并防止由其引起的龋齿、齿龈炎和口臭的功效。防蛀漱洗液通过使用氟化物,从而保护牙齿并防止龋齿。漱口水也有
  • 船舶造船是指建造或制造船只的生产工业,一般是在一种专业设施造船厂里的船台或船坞中进行。造船本身应用的科技十分广泛,从船身到引擎的使用,造船技术可以分为几大类,包含船体(或称载
  • HBrOsub3/subS溴磺酸是一种无机酸,化学式为HBrO3S。它可由三氧化硫与溴化氢在液态二氧化硫中反应制得,化学性质不稳定,低温下就会分解成溴、二氧化硫和硫酸。
  • 蛋清蛋白(英语:Egg white、albumen、glair/glaire)是指蛋(尤其指鸡蛋)内的半透明液体,故又称为蛋清,与蛋黄相对。蛋白遇热后会凝固成白色固体,因而得名。 蛋白就如同哺乳类的羊水一样有
  • 日本烧酒在日本,烧酎,又称日本烧酒,日式烧酒,是一种产于日本的传统蒸馏酒。名称来自古汉语,与烧酒同源。日本本岛中,南九州地区是最早制造烧酎的地区,在长崎县壹岐岛与伊豆诸岛等地皆有出产
  • 布拉克詹姆士·怀特·布拉克爵士,OM,FRS,FRSE,FRCP(英语:Sir James Whyte Black,1924年6月14日-2010年3月22日),苏格兰药理学家,发明药物Propranolol和合成出Cimetidine。他因这些成就而在198
  • 文盲率识字率的定义为一个国家当中,十五岁以上的合法“劳动人口”中能读写文字的人的比率,就目前而言,全球平均识字率正在增加当中,但是世界上依然有不少失学的人口。识字率能反映出一
  • 福建观察使威武军节度使,又称威武节度使、福州节度使,是唐朝乾宁时在今福建地区设置的节度使,原为福建观察使。管辖福州、建州、汀州、泉州、漳州等地区,治所闽中。王信臣为首任威武军节度
  • 国立科学工业园区实验高级中学国立科学工业园区实验高级中学(National Experimental High School at Hsinchu Science Park,NEHS),为位于中华民国新竹科学工业园区内的学校,创立于1983年。台湾草创科学园区时,
  • 相互操作性互操作性(英文:Interoperability;中文又称为:协同工作能力,互用性)作为一种特性,它指的是不同的系统和组织机构之间相互合作,协同工作(即互操作)的能力。技术系统工程设计(technical sy