波包

✍ dations ◷ 2025-11-29 00:39:02 #波包
在任意时刻,波包(wave packet)是局限在空间的某有限范围区域内的波动,在其他区域的部分非常微小,可以被忽略。波包整体随着时间流易移动于空间。波包可以分解为一组不同频率、波数、相位、波幅的正弦波,也可以从同样一组正弦波构成;在任意时刻,这些正弦波只会在空间的某有限范围区域相长干涉,在其它区域会相消干涉。:53-56:312-313描绘波包轮廓的曲线称为包络线。依据不同的演化方程,在传播的时候,波包的包络线(描绘波包轮廓的曲线)可能会保持不变(没有色散),或者包络线会改变(有色散)。在量子力学中,波包可以用来代表粒子,表示粒子的概率波;也就是说,表现于位置空间,波包在某时间、位置的波幅平方,就是找到粒子在那时间、位置的概率密度;在任意区域内,波包所囊括面积的绝对值平方,就是找到粒子处于那区域的概率。粒子的波包越狭窄,则粒子位置的不确定性越小,而动量的不确定性越大;反之亦然。这位置的不确定性和动量的不确定性,两者之间无可避免的关系,是不确定性原理的一个标准案例。:53-56描述粒子的波包满足薛定谔方程,是薛定谔方程的数学解。通过含时薛定谔方程,可以预测粒子随着时间演化的量子行为。这与在经典力学里的哈密顿表述很类似。:123早在十七世纪,艾萨克·牛顿就提出了光微粒说,即光是由很多离散的粒子所构成,其中每一个粒子都遵守牛顿运动定律。他的主要反对者罗伯特·胡克、克里斯蒂安·惠更斯则主张光波动说:光是一种传播于介质中的波动。十九世纪,物理学者发现,在许多实验中,光表现出波动行为。其中一个特别着名的实验是双缝实验,这是英国物理学者托马斯·杨于1801年完成的实验。从这实验观察到的干涉图样给予光微粒说严重打击,因为光微粒说无法说明这现象,而光波动说可以。很多物理学者因此改变立场,采纳了光波动说。在20世纪初,科学家发现经典力学存在着很多严峻问题,越来越多实验结果无法用经典理论来解释。到了1930年代,物理学者开始采纳波粒二象性,即物质具有波动性与粒子性。在这段时期,量子力学如火如荼的发展造成了理论方面的重大突破。许多困惑物理学者多年的实验结果,都能够得到圆满合理的解释。例如,1905年,阿尔伯特·爱因斯坦对光电效应的理论解析。按照爱因斯坦的理论解析,光的能量并非均匀分布,而是负载于离散的量子包,现称为光子。每个光子的能量 E {displaystyle E} 与频率 ν {displaystyle nu } 之间的关系为其中, h {displaystyle h} 是普朗克常数。在光电效应里,光子的频率必须超过被冲击金属的特征极限频率(对应于金属的逸出功),才能使金属表面的电子获得足够能量逃逸出来,否则,不论辐照率有多高,都无法使得电子从金属表面逃逸出来。二十世纪,量子力学持续地蓬勃发展。它所展现的绘景是一种粒子世界。在这粒子世界里,每一种物质都是由粒子形成,每一种现象都是由粒子彼此互相作用而产生;可是,这些粒子的量子行为都是用概率波来描述。所有的量子行为都被约化为这些概率波的演化。至今,量子世界的粒子性已被许多实验证实,波动现象可以被诠释为粒子的波包秉性的特征后果。举一个非色散传播范例,思考波动方程:其中, u {displaystyle u} 是波动函数, t {displaystyle t} 是时间, v {displaystyle v} 是波动在某介质里的传播速度。采用物理时间常规 e − i ω t {displaystyle e^{-iomega t}} ,波动方程的平面波解是其中, x {displaystyle mathbf {x} } 是位置矢量, k {displaystyle mathbf {k} } 是波数矢量, ω {displaystyle omega } 是角频率。为了满足平面波为波动方程的解,角频率和波数的色散关系为为了便于计算,只考虑波传播于一维空间,则波动方程的一般解是其中,方程右边的第一项表示往正 x {displaystyle x} 方向传播的波动,第二项表示往负 x {displaystyle x} 方向传播的波动。波包是在局部区域里一组波的叠加。假若,波包是强劲存在于局部区域,则需要更多的频率来达成局部区域内的相长叠加,与局部区域外的相消叠加。这样,从基本平面波解,一般的波包可以表示为其中,因子 1 / 2 π {displaystyle 1/{sqrt {2pi }}} 是由傅里叶变换的常规而设定,振幅 A ( k ) {displaystyle A(k)} 是线形叠加的系数函数。逆反过来,系数函数可以表达为其中, u ( x , 0 ) {displaystyle u(x,,0)} 是波包在初始时间 t = 0 {displaystyle t=0} 的函数形式。所以,知道波包在时间 t = 0 {displaystyle t=0} 的函数形式 u ( x , 0 ) {displaystyle u(x,,0)} ,应用傅里叶变换,可以计算出波包在任何时间的函数形式 u ( x , t ) {displaystyle u(x,,t)} 。例如,选择初始时间的函数形式为经过一番运算,可以得到这个波包的实值部分或虚值部分的非散色传播展示于前面动画。再举一个有色散传播例子,思考薛定谔方程,其色散关系为只考虑一维问题。经过一番运算,满足初始条件 u ( x , 0 ) = e − x 2 + i k 0 x {displaystyle u(x,,0)=e^{-x^{2}+ik_{0}x}} 的解是观察这波包的色散行为。取 u ( x , t ) {displaystyle u(x,,t)} 的绝对值,这色散波包传播的群速度是常数 k 0 {displaystyle k_{0}} 。波包的宽度跟时间有关,根据公式 ( 1 + 4 t 2 ) 1 / 2 {displaystyle (1+4t^{2})^{1/2}} 随着时间增加。

相关

  • 尿液分析尿液分析,又称为尿常规,是针对尿液标本所进行的一组医学检验项目,是医学诊断过程中最为常用的方法之一。尿液分析是历史最为悠久的医学检验方法之一,可以反映肾脏和泌尿道等方面
  • 色欲性欲,指对性的渴望。一般科学家认为,性欲是一种本能欲望,对于繁殖下一代有利。至于对大多数动物而言,性欲只存在于发情期时,而动物的发情期通常都是季节性的(例如春天)。对于某些宗
  • 菌媒介异营菌异养(英语:Myco-heterotrophy)是植物与真菌的一种共生关系,此关系中植物不行光合作用,而是与真菌形成菌根后,透过寄生真菌取得全部或部分的有机养分。菌异养被认为是一种欺诈行
  • 阴道分泌物阴道分泌物(英语:vaginal discharge),是一类从阴道流出或分泌出的生物体液。它可能是多种颜色,通常为白色、淡黄色或绿色。大多数的分泌物都是正常并反映出不同时期的月经周期,但
  • 亨德里克·范德胡斯特亨德里克·克里斯托菲尔·“亨克”·范德胡斯特,ForMemRS(荷兰语:Hendrik Christoffel "Henk" van de Hulst,1918年11月19日-2000年7月31日),荷兰天文学家和数学家。1944年,范德胡斯
  • 成田市成田市(日语:成田市/なりたし Narita shi */?)是位于日本千叶县北部的城市。境内有成田国际机场,门前町成田山新胜寺是成田市最早发展的地区,本市也因此而繁荣。人口约10万人。
  • 微皱褶细胞微皱褶细胞(Microfold cells)是一种免疫细胞。分布于胃肠道、口腔部(例如扁桃体)、小型唾液腺管、呼吸道、眼结膜、生殖泌尿道等部位。在小肠和大肠中,微皱褶细胞散布在淋巴
  • 基本力基本相互作用(fundamental interaction),为物质间最基本的相互作用,常称为自然界四力或宇宙基本力。迄今为止观察到的所有关于物质的物理现象,在物理学中都可借助这四种基本相互
  • 沉积沉降又称沉积、沉淀,是悬浮液的粒子下沉积聚的过程。原因可以是地心吸力、离心力或电磁力。在地理学,沉降通常是侵蚀作用的相反,亦即沉积物迁移的最终结果;过程包括跃移。不同大
  • 成长的烦恼《成长的烦恼》(Growing Pains,台湾:欢乐家庭)是一部由美国ABC拍摄的情景喜剧。这部剧在美国从1985年9月24日开始播出,到1992年4月25日结束,共播出7季166集。曾在台湾中华电视公司