正常重力

✍ dations ◷ 2025-06-28 23:46:49 #大地测量学,地球物理学,Pages that use a deprecated format of the math tags

正常重力(英语:Normal gravity)是正常椭球体在其外部空间所产生的重力,由意大利数学物理学家卡洛·索米里安在1929年引入,在大地测量学与地球物理学的研究中常用于对真实地球所产生的重力进行近似。在正常重力场中,正常椭球所产生的重力位和能够以较为简单的函数关系表达,且与真实的地球重力位相接近,而正常重力即为这一正常重力位所对应的重力。:190,212根据不同的定义方式,真实重力与正常重力之间的差异被称为重力异常或重力扰动。正常重力与真实重力之间的比例约为 99.995 % {\displaystyle 99.995\%} :15。

由于正常重力能够被精确计算,其在高程系统中也用于代替真实重力来作为正常高系统所采用的测量值。:42

正常重力值在两极最大,在赤道处最小,随纬度降低呈递减趋势,相对于赤道面对称而与经度无关。椭球面上几个特殊的重力值分别为:

设正常椭球体在其外部空间产生的正常重力位为 U {\displaystyle U} ,则正常重力矢量被定义为该正常重力位的梯度::68

在椭球坐标系 ( u , β , λ ) {\displaystyle (u,\beta ,\lambda )} 中,正常重力矢量的三个分量具体表示为::68

上式中的 w = u 2 + E 2 sin 2 β u 2 + E 2 {\displaystyle w={\sqrt {u^{2}+E^{2}\sin ^{2}\beta \over u^{2}+E^{2}}}} 是为简化公式而引入的辅助量:67, E {\displaystyle E} 是椭球的半焦距:39。又因正常重力位 U {\displaystyle U} 与经度无关,所以正常重力矢量的经度分量为零。

由正常重力的数学表达式可以得出,正常重力的值可以根据正常重力位 U {\displaystyle U} 的偏导数,以及正常椭球体本身的几何性质得到。而正常椭球体的确定只需要四个基本参数:椭球的半长轴 a {\displaystyle a} 、几何扁率 f {\displaystyle f} 、赤道上的正常重力值 γ e {\displaystyle \gamma _{e}} ,以及地球自转的角速度 ω {\displaystyle \omega } ,其他的几何参数可以由上述基本参数确定::79

亦有一些坐标系统会选择其他的基本参数,例如GRS80椭球选用的是地心引力常数 G M {\displaystyle GM} 、地球动力学形状因子 J 2 {\displaystyle J_{2}} 、地球自转角速度 ω {\displaystyle \omega } 和椭球的半长轴 a {\displaystyle a} ,但其他的椭球参数仍能由这些基本参数计算而得。

法国数学家克莱罗在其发表于1743年的著作中给出了地球的几何扁率 f {\displaystyle f} 与重力扁率 f {\displaystyle f^{*}} 之间的对应关系,即克莱罗定理。在顾及至扁率的平方项的情况下,该定理可表述为:

重力扁率 f {\displaystyle f^{*}} 的定义与几何扁率类似,其由椭球赤道处的重力 γ e {\displaystyle \gamma _{e}} 和椭球极点处的重力 γ p {\displaystyle \gamma _{p}} 决定 ::76

其中 m = ω 2 a 2 b G M {\displaystyle m={\omega ^{2}a^{2}b \over GM}} :69,且有 ω 2 b γ e = m + 3 2 m 2 {\displaystyle {\omega ^{2}b \over \gamma _{e}}=m+{3 \over 2}m^{2}} :76。

克莱罗定理给出了椭球赤道处的正常重力值和极点处的正常重力值,而椭球面上其他纬度的正常重力则可由正常重力公式计算得到,这一公式由索米里安在1929年给出::70

其中 β {\displaystyle \beta } 是椭球面上某点的归化纬度,顾及到大地纬度 φ {\displaystyle \varphi } 与归化纬度 β {\displaystyle \beta } 存在如下转换关系:

则正常重力公式也可以表达成大地纬度 φ {\displaystyle \varphi } 的函数:

正常重力公式也可以展开为几何扁率 f {\displaystyle f} 的级数,其截断形式为::77

其中的系数为:

这一公式也可写为:

其中的 f = f 2 + f 4 {\displaystyle f^{*}=f_{2}+f_{4}} 为上述提到的重力扁率。

正常重力公式还可以闭合形式表达::4-1

其中的系数 k {\displaystyle k} 为:

采用不同的椭球参数和不同的表达形式,正常重力公式可以有不同的数值计算形式,常用的几条公式包括:

使用于GRS80坐标系

在椭球面外部不远处,其正常重力 γ h {\displaystyle \gamma _{h}} 可以在其沿法线到椭球面上投影处展开为正常高 h {\displaystyle h} 的级数::78

由广义布隆斯方程,椭球面的外部空间的重力梯度与椭球面(水准面)的平均曲率半径 J {\displaystyle J} 的关系为::78

又二次导数 2 γ / h 2 {\displaystyle \partial ^{2}\gamma /\partial h^{2}} 是微小量,可以将其近似近似于在球面外部微分(即以半长轴 a {\displaystyle a} 代替 r {\displaystyle r} ),得到::78

得到正常重力的向上延拓公式为::79

上式的数值形式近似为::27

相关

  • 台中市公共自行车租赁系统台中市公共自行车租赁系统(英文:iBike、iYouBike)是台湾台中市的公共自行车租赁系统,于2014年7月18日开始试营运。初期以台湾大道等市中心路段设站,现已将服务范围扩展至大里、太
  • XSDXSD (XML Schema Definition)是W3C于2001年5月发布的推荐标准,指出如何形式描述XML文档的元素。XSD是许多XML Schema 语言中的一支。XSD是首先分离于XML本身的schema语言,故获
  • ɤ̞中后不圆唇元音是一种用于一些口语中的元音。声学上,这个元音其实是中次后不圆唇元音。由于没有语言可以同时区分半闭后不圆唇元音、中后不圆唇元音及半开后不圆唇元音三种音
  • 1859年
  • 日本鹌鹑日本鹌鹑(学名:Coturnix japonica)是东亚的一种鹌鹑,原本被视为鹌鹑的亚种,于1983年被认定为独立的物种。日本鹌鹑自从12世纪开始影响人类社会,并自此帮助工业和科学研究的发展。
  • 山鹑中华鹧鸪(学名:Francolinus pintadeanus),又称中国鹧鸪、越雉、怀南。属鸡形目雉科鹧鸪属。鹧鸪头顶羽毛为黑色,有褐色及黄色斑,身体大多为黑色,有很多圆形白色斑点,下身的斑点较大
  • 威廉·魏特林威廉·魏特林(1808年10月5日-1871年1月24日)裁缝、发明家、19世纪欧洲重要的激进主义者。威廉·魏特林曾被马克思和恩格斯评价为空想社会主义者,同时恩格斯也认为他是“德国共产
  • 阵发性室上性心搏过速阵发性室上性心搏过速(英语:Paroxysmal supraventricular tachycardia,簡稱 PSVT)是室上性心搏过速中的一种。一般患者不会出现症状,若有则可能是心悸、头重脚轻、盗汗、呼吸困难
  • 安德鲁克里斯和狮子《安德鲁克里斯和狮子》(英语:Androcles and the Lion )1952年上映于英国的古装片。安德罗斯是一个信仰基督教的裁缝,身份是一个奴隶,他在罗马帝国受到宗教迫害,因此逃出了罗马帝
  • 是啊! We're ALIVE“是啊! We're ALIVE”(そうだ! We're ALIVE)是日本的女子偶像组合“早安少女组。”的第14张单曲。于2002年2月20日由zetima发售。 14日—21日(合并周) 喜欢你(Mr.Children) | 2