阶 (群论)

✍ dations ◷ 2025-04-04 06:04:54 #群论

在群论这一数学的分支里,阶这一词被使用在两个相关连的意义上:

一个群的阶被标记为ord()或||,而一个元素的阶则标记为ord()或||。

例子:包含三个物件的所有置换之对称群S3会有下面的乘法表。

这个群有六个元素,所以ord(S3) = 6。以定义可知,单位元素的阶为1。、和的平方都为,所以这些群元素的阶都为2。剩下的,和的阶为3,因为2 = 且 3 =  = ,而2 = 且 3 =  = 。

由一个群或其内之元素的阶可以大致知道群的结构。简略地说,阶的因式分解越复杂,这个群就会越复杂。

若群的阶为1,则这个群称为平凡群。给定一元素,则ord() = 1当且仅当为其单位元素。若内的每一个(非单位)元素和其逆元素相同(故2 = ),则ord() = 2且因此会是个阿贝尔群,因为=()()=()()=。此一叙述的相反不一定为对;例如,整数同余6之(加法)循环群Z6为可换的,但数字2的阶为3(2+2+2 = 6 ≡ 0 (mod 6))。

阶两种概念之间的关系如下:若给出一个由产生之子群

对于任一个整数,会有“ =   当且仅当   ord() 整除 ”之关系。

一般来说,的每个子群之阶都会整除的阶。更精确地来说:若是的一个子群,则

,其中是于内的之指标,为一整数。此为拉格朗日定理

上述会有一个立即的结论为,一个群的每一个元素之阶都会整除此一群的阶。例如,在上面所示之对称群中,ord(S3) = 6,且其内元素的阶分别为1、2或3。

下面的部分相反对有限群为真:若会整除一个群的阶且为一个质数,则存在一个内内为阶的元素(这有时被称为柯西定理)。此一叙述在其阶为合数时并不成立,如克莱因四元群中即不存在一个4阶的元素。这可以用数学归纳法来证明。这个定理的结论包括:一个群的阶为一个质数的次方当且仅当对每个在内的,ord()都是的某个次方。

若有无限阶,则的所有次方也都会有无限阶。若有有限阶,则对于的次方的阶会有下列的公式:

特别地是,和其逆元素-1会有相同的阶。

并不存在一个将和的阶关连到其乘积的阶之一般公式。和都有着有限阶而则有着无限阶的情形还是有可能的。若=,则至少可知ord()会整除lcm(ord(),ord())。其结论可证明在一个有限阿贝尔群中,若为所有群元素的阶之中的最大值,则每一个元素的阶都会整除。

若是一个有阶的有限群,且是的因数,则内有阶的元素个数会为φ()的倍数,其中φ为欧拉函数,为不大于且互质于的正整数之个数。例如,在S3的例子中,φ(3) =2,且确实有恰好两个3阶的元素。这个定理对为2阶之元素没有什么有用的资讯,因为φ(2) = 1。

群同态会缩减元素的阶:若:  → 是一个同态,且是内一个有限阶的元素,则ord(())会整除ord()。若为单射的,则ord(()) = ord()。这通常可以被用来证明在两个给定之离散群中不存在(单射)同态。(例如,不存在一个非当然同态: S3 → Z5,因为每个在Z5内除了0之外的元素都有着5阶,而不可以整除在S3内有1、2、3阶的元素。)更进一步的结论有共轭元素会有相同的阶。

一个关于阶的重要结论为类方程;其将有限群的阶连结至其中心Z()的阶和其非当然共轭类的多寡:

其中为非当然共轭类的多寡;其为||大于1的纯因数,且会相等于某些的非当然纯子群的指标。例如,S3的中心为只有单位元素之当然群,而此方程则读做|S3| = 1+2+3。

一些有关群和其元素较深的问题包含在伯恩赛德问题里;有些的问题至今仍然未解。

相关

  • 叶培建叶培建(1945年1月-),江苏泰兴人,中国嫦娥工程总指挥和总设计师,中国科学院院士。1945年1月出生于江苏省泰兴。1962年,毕业于湖州中学。1967年,毕业于浙江大学无线电技术专业。1980年
  • ɽ̊清卷舌闪音是一种辅音,国际音标(IPA)记作⟨ɽ̊⟩,X-SAMPA音标则写作r`_0。此音在迪维西语的一些方言中,被当作是/ʂ/的另一种发音。清卷舌闪音的特征包括:当符号成对出现时,左边的
  • 大学列表本列表包括韩国各个大学的信息。需要注意的是,韩国的“大学校”(朝鲜语:대학교/大學校)是指现代汉语所指的综合大学,而“大学”(朝鲜语:대학/大學)是指独立的学院、专门大学(朝鲜语:대한
  • 浙江日报报业集团浙江日报报业集团,简称浙报集团,是中华人民共和国的一家报业集团,成立于2000年6月25日,2009年,成立浙报传媒控股集团。集团现拥有拥有33家传统媒体、300多个新媒体、500万传统媒
  • McFadyen–Stevens反应McFadyen-Stevens反应(McFadyen-Stevens reaction)碱催化下,酰基磺酰肼发生热分解,生成相应的醛类。 Dudman 等发展了一种不同的酰肼试剂。反应的具体机理仍不很清楚。有认为反
  • 氯化锔氯化锔是一种无机化合物,化学式CmCl3,有很强的放射性。氯化锔可由氧化锔和四氯化碳或氯化氢气体加热至400~500℃反应得到。氯化锔易溶于水,其水溶液是无色的。氯化锔在加热下,可
  • 远山景任远山景任(1537年-1573年1月6日)是日本战国时代武将。岩村远山氏当主。美浓国惠那郡岩村城城主。父亲是远山景前。妻子是织田信长的叔母岩村殿。别名大和守、友通、左卫门尉、修
  • AM/PM (专辑)《am/pm》 是张敬轩的第四张个人专辑,于2004年11月24日推出。其中收录的歌曲《Blessing》的粤语版是黄霑生前最后一份填词作品。
  • 皮西亚斯皮西亚斯(Pytheas,古希腊语:Πυθέας ὁ Μασσαλιώτης,也译作“皮忒阿斯”“皮提阿斯”等,公元前4世纪)是一位希腊的地理学家和探险家,出身自当时的希腊殖民地马萨利
  • 大纹面蝠属大纹面蝠属(大纹面蝠),哺乳纲、翼手目、叶口蝠科的一属,而与大纹面蝠属(大纹面蝠)同科的动物尚有吸血蝠属(吸血蝠)、黄耳蝠属(大黄耳蝠)、筑帐蝠属(筑帐蝠)等之数种哺乳动物。