阶 (群论)

✍ dations ◷ 2025-07-09 15:51:28 #群论

在群论这一数学的分支里,阶这一词被使用在两个相关连的意义上:

一个群的阶被标记为ord()或||,而一个元素的阶则标记为ord()或||。

例子:包含三个物件的所有置换之对称群S3会有下面的乘法表。

这个群有六个元素,所以ord(S3) = 6。以定义可知,单位元素的阶为1。、和的平方都为,所以这些群元素的阶都为2。剩下的,和的阶为3,因为2 = 且 3 =  = ,而2 = 且 3 =  = 。

由一个群或其内之元素的阶可以大致知道群的结构。简略地说,阶的因式分解越复杂,这个群就会越复杂。

若群的阶为1,则这个群称为平凡群。给定一元素,则ord() = 1当且仅当为其单位元素。若内的每一个(非单位)元素和其逆元素相同(故2 = ),则ord() = 2且因此会是个阿贝尔群,因为=()()=()()=。此一叙述的相反不一定为对;例如,整数同余6之(加法)循环群Z6为可换的,但数字2的阶为3(2+2+2 = 6 ≡ 0 (mod 6))。

阶两种概念之间的关系如下:若给出一个由产生之子群

对于任一个整数,会有“ =   当且仅当   ord() 整除 ”之关系。

一般来说,的每个子群之阶都会整除的阶。更精确地来说:若是的一个子群,则

,其中是于内的之指标,为一整数。此为拉格朗日定理

上述会有一个立即的结论为,一个群的每一个元素之阶都会整除此一群的阶。例如,在上面所示之对称群中,ord(S3) = 6,且其内元素的阶分别为1、2或3。

下面的部分相反对有限群为真:若会整除一个群的阶且为一个质数,则存在一个内内为阶的元素(这有时被称为柯西定理)。此一叙述在其阶为合数时并不成立,如克莱因四元群中即不存在一个4阶的元素。这可以用数学归纳法来证明。这个定理的结论包括:一个群的阶为一个质数的次方当且仅当对每个在内的,ord()都是的某个次方。

若有无限阶,则的所有次方也都会有无限阶。若有有限阶,则对于的次方的阶会有下列的公式:

特别地是,和其逆元素-1会有相同的阶。

并不存在一个将和的阶关连到其乘积的阶之一般公式。和都有着有限阶而则有着无限阶的情形还是有可能的。若=,则至少可知ord()会整除lcm(ord(),ord())。其结论可证明在一个有限阿贝尔群中,若为所有群元素的阶之中的最大值,则每一个元素的阶都会整除。

若是一个有阶的有限群,且是的因数,则内有阶的元素个数会为φ()的倍数,其中φ为欧拉函数,为不大于且互质于的正整数之个数。例如,在S3的例子中,φ(3) =2,且确实有恰好两个3阶的元素。这个定理对为2阶之元素没有什么有用的资讯,因为φ(2) = 1。

群同态会缩减元素的阶:若:  → 是一个同态,且是内一个有限阶的元素,则ord(())会整除ord()。若为单射的,则ord(()) = ord()。这通常可以被用来证明在两个给定之离散群中不存在(单射)同态。(例如,不存在一个非当然同态: S3 → Z5,因为每个在Z5内除了0之外的元素都有着5阶,而不可以整除在S3内有1、2、3阶的元素。)更进一步的结论有共轭元素会有相同的阶。

一个关于阶的重要结论为类方程;其将有限群的阶连结至其中心Z()的阶和其非当然共轭类的多寡:

其中为非当然共轭类的多寡;其为||大于1的纯因数,且会相等于某些的非当然纯子群的指标。例如,S3的中心为只有单位元素之当然群,而此方程则读做|S3| = 1+2+3。

一些有关群和其元素较深的问题包含在伯恩赛德问题里;有些的问题至今仍然未解。

相关

  • 风湿热风湿热(英语:Rheumatic fever)也称为急型风湿热(英语:acute rheumatic fever, ARF),是会侵犯心脏、关节、皮肤和脑部的发炎性疾病。病情最早的描述出现在公元前五世纪希波克拉底的
  • 普拉西多·多明哥何塞·普拉西多·多明戈·恩比尔(西班牙语:José Plácido Domingo Embil,1941年1月21日-),西班牙歌唱家,20世纪后半叶的世界三大男高音之一,以响亮、清晰和强而有力的嗓音闻名于世
  • 剑桥使徒剑桥使徒(英语:Cambridge Apostles或者Cambridge Conversazione Society)是剑桥大学的一个秘密社团。1820年,圣约翰学院的一位大学生乔治·汤姆林森同他的朋友们一道成立了一个
  • 素食营养学吃素食在营养健康上会有很多优势,但也有很多挑战。有证据表明,素食者一般更加健康和长寿。素食者患冠心病,肥胖症,高血压,II型糖尿病和某些癌症的比例较低。素食往往富含碳水化合
  • 寡毛纲 (纤毛虫)寡毛纲(学名:Oligotrichea)之下只有下列两个亚纲:
  • 2015年安卡拉爆炸案 除特别注明外,本文所有时间均以东三区时间(UTC+3)为准。当地时间(EEST)2015年10月10日10:04,土耳其首都安卡拉中央火车站外发生两起爆炸。造成103名平民死亡,超过2013年雷伊汉勒爆
  • 西达德·查图维迪西达德·查图维迪(英语:Siddhant Chaturvedi,印地语:सिद्धांत चतुर्वेदी,1993年4月29日-)是印度男演员,主要出现在宝莱坞电影。查图维迪在2016年出道,出演了两部网
  • 保罗·库朗特保罗·库朗特(Paul Courant,1948年1月5日-),美国经济学家,擅长公共物品领域,目前他的研究重点是大学经济学、图书馆和档案局经济学,以及学术出版系统的新信息技术的影响。库朗特于19
  • 萨伏依的安娜萨伏依的安娜(Anna of Savoy,1306年-1365年)是拜占庭皇帝皇后,安德洛尼卡三世的第二任妻子。萨伏依的安娜是萨伏依伯爵阿梅德奥五世之女。她于1326年嫁给安德洛尼卡三世。此时,安
  • 奥斯瓦勒·狄朗奥斯瓦勒·狄朗 (法语:Oswald Durand, 1840年9月17日 - 1906年4月22日) 是海地诗人、政治家,他在海地的地位犹如英国的莎士比亚和意大利的但丁。 他出生在海地北部的北圣路易