首页 >
伽玛函数
✍ dations ◷ 2025-07-19 06:40:11 #伽玛函数
在数学中,
Γ
{displaystyle Gamma ,}
函数,也叫做伽玛函数(Gamma函数),是阶乘函数在实数与复数域上的扩展。如果
n
{displaystyle n}
为正整数,则:对于实数部分为正的复数
z
{displaystyle z}
,伽玛函数定义为:此定义可以用解析延拓原理,拓展到除去非正整数的整个复数域上。在概率论中常见此函数,在组合数学中也常见。Γ
{displaystyle Gamma ,}
函数可以通过欧拉(Euler)第二类积分定义:对复数
z
{displaystyle z,}
,我们要求
R
e
(
z
)
>
0
{displaystyle mathrm {Re} (z)>0}
。Γ
{displaystyle Gamma }
函数还可以通过对
e
−
t
{displaystyle mathrm {e} ^{-t},}
做泰勒展开,解析延拓到整个复平面:
Γ
(
z
)
=
∫
1
∞
t
z
−
1
e
t
d
t
+
∑
n
=
0
∞
(
−
1
)
n
n
!
1
n
+
z
{displaystyle Gamma (z)=int _{1}^{infty }{frac {t^{z-1}}{mathrm {e} ^{t}}}{rm {d}}t+sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}{frac {1}{n+z}}}这样定义的
Γ
{displaystyle Gamma }
函数在全平面除了
z
=
0
,
−
1
,
−
2
,
…
{displaystyle z=0,-1,-2,ldots }
以外的地方解析。Γ
{displaystyle Gamma }
函数也可以用无穷乘积的方式表示:这说明
Γ
(
z
)
{displaystyle Gamma (z)}
是亚纯函数,而
1
Γ
(
z
)
{displaystyle {frac {1}{Gamma (z)}}}
是全纯函数Γ
{displaystyle Gamma ,}
函数可以用无穷乘积表示:其中
γ
{displaystyle gamma ,}
是欧拉-马歇罗尼常数。⟹
Γ
(
α
)
λ
α
=
∫
0
∞
x
α
−
1
e
−
λ
x
d
x
{displaystyle implies {frac {Gamma left(alpha right)}{lambda ^{alpha }}}=int _{0}^{infty }x^{alpha -1}mathrm {e} ^{-lambda x}{rm {d}}x}Γ
{displaystyle Gamma ,}
函数的递推公式为:
Γ
(
x
+
1
)
=
x
Γ
(
x
)
{displaystyle Gamma (x+1)=xGamma (x)}
,对于正整数
n
{displaystyle n,}
,有可以说
Γ
{displaystyle Gamma ,}
函数是阶乘的推广。Γ
(
n
+
1
)
=
∫
0
∞
e
−
x
x
n
+
1
−
1
d
x
=
∫
0
∞
e
−
x
x
n
d
x
{displaystyle Gamma (n+1)=int _{0}^{infty }mathrm {e} ^{-x}x^{n+1-1}mathrm {d} x=int _{0}^{infty }mathrm {e} ^{-x}x^{n}{rm {d}}x}我们用分部积分法来计算这个积分:∫
0
∞
e
−
x
x
n
d
x
=
[
−
x
n
e
x
]
0
∞
+
n
∫
0
∞
e
−
x
x
n
−
1
d
x
{displaystyle int _{0}^{infty }mathrm {e} ^{-x}x^{n}mathrm {d} x=left_{0}^{infty }+nint _{0}^{infty }mathrm {e} ^{-x}x^{n-1}{rm {d}}x}当
x
=
0
{displaystyle x=0,}
时,
−
0
n
e
0
=
0
1
=
0
{displaystyle {tfrac {-0^{n}}{mathrm {e} ^{0}}}={tfrac {0}{1}}=0}
。当
x
{displaystyle x,}
趋于无穷大时,根据洛必达法则,有:lim
x
→
∞
−
x
n
e
x
=
lim
x
→
∞
−
n
!
⋅
0
e
x
=
0
{displaystyle lim _{xrightarrow infty }{frac {-x^{n}}{mathrm {e} ^{x}}}=lim _{xrightarrow infty }{frac {-n!cdot 0}{mathrm {e} ^{x}}}=0}
。因此第一项
[
−
x
n
e
x
]
0
∞
{displaystyle left_{0}^{infty }}
变成了零,所以:Γ
(
n
+
1
)
=
n
∫
0
∞
x
n
−
1
e
x
d
x
{displaystyle Gamma (n+1)=nint _{0}^{infty }{frac {x^{n-1}}{mathrm {e} ^{x}}}{rm {d}}x}等式的右面正好是
n
Γ
(
n
)
{displaystyle nGamma (n),}
。因此,递推公式为:此式可用来协助计算t分布概率密度函数、卡方分布概率密度函数、F分布概率密度函数等的累计概率。对任何实数α斯特灵公式能用以估计
Γ
(
z
)
{displaystyle Gamma (z)}
函数的增长速度。公式为:其中e约等于2.718281828459。对任何复数z,满足 Re(z) > 0,有于是,对任何正整数 m其中γ是欧拉-马歇罗尼常量。注意到在
Γ
{displaystyle Gamma }
函数的积分定义中若取
z
{displaystyle z,}
为实部大于零之复数、则积分存在,而且在右半复平面上定义一个全纯函数。利用函数方程并注意到函数
sin
(
π
z
)
{displaystyle sin(pi z),}
在整个复平面上有解析延拓,我们可以在
R
e
(
z
)
<
1
{displaystyle mathrm {Re} (z)<1}
时设从而将
Γ
{displaystyle Gamma ,}
函数延拓为整个复平面上的亚纯函数,它在
z
=
0
,
−
1
,
−
2
,
−
3
⋯
{displaystyle z=0,-1,-2,-3cdots }
有单极点,留数为许多编程语言或表格软件有提供Γ函数或对数的Γ函数,例如EXCEL。而对数的Γ函数还要再取一次自然指数才能获得Γ函数值。例如在EXCEL中,可使用GAMMALN函数,再用EXP,即可求得任意实数的伽玛函数的值。而在没有提供Γ函数的程序环境中,也能够过泰勒级数或斯特灵公式等方式来近似,例如Robert H. Windschitl在2002年提出的方法,其在十进制可获得有效数字八位数的精确度,已足以填满单精度浮点数的二进制有效数字24位:
相关
- 蛲虫蛲虫(学名:Enterobius vermicularis,英文Pinworm),别名:针状虫、坐虫,线虫动物门中的一类肠道寄生虫,是蛲虫病的病因。在全世界均有其分布。成虫虫体外型有如粉红色线头,前端有三片
- 学科列表这是一个学科的列表。学科是在大学教学(教育)与研究的知识分科。学科是被发表研究和学术杂志、学会和系所所定义及承认的。领域通常有子领域或分科,而其之间的分界是随便且模
- 全身性过敏反应过敏性休克(英语:Anaphylaxis)反应系指一种严重的全身性过敏反应,发病极快且具有致命性。通常会伴随以下症状:起痒疹、舌头或咽喉肿胀、呼吸困难、呕吐、头晕及低血压;以上症状往
- 进化 (消歧义)演化、演变、演进、是翻译自英文“Evolution”,这个字有许多意义,其中包括许多作品。以下名单为列举 ,关于更多以Evolution为名的事物,可参考其他语言版本。
- 波河波河(意大利语:Po)是意大利最长的一条河流。位于意大利北部,发源于阿尔卑斯山地区,向东在威尼斯附近注入亚得里亚海,全长652公里。流域面积71,000平方公里。流经都灵。在伦巴第平
- 斯维尔德洛夫斯克叶卡捷琳堡(俄语:Екатеринбу́рг),亦称凯瑟琳堡,曾称斯维尔德洛夫斯克(Свердло́вск),位于乌拉尔山脉东麓,伊塞特河由西北向东南穿城而过。叶卡捷琳堡是俄罗斯
- 唱片音乐专辑(英语:Album),或简称为“专辑”,也有部分地区称呼为“大碟”,指的是多个音频录音作品以CD、唱片、录音带等介质为载体发布的单个项目的统称,一般指含有至少10个音轨的唱片
- 娅婿姻亲指基于婚姻关系而生之亲属型态,一方配偶与他方配偶之亲属间,因双方缔结婚姻后,成为相互具法律上亲属关系的情况。《中华民国民法》第969条规定,包括配偶的血亲、血亲的配偶
- 正面月球正面是月球永远朝向地球的半球,而相对的另外半球被称为月球背面。因为月球绕地球公转的周期和它绕着自己的轴心自转的周期相同,因此在地球上只能看见月球的一面,这种情形称
- 法器法器或法具,是宗教用语,泛指在佛教、道教里供仪式使用的器具。在佛教里也叫法具、佛器、佛具。佛教常见的法器有法轮、念珠、袈裟、钵、八吉祥、摩尼宝、法鼓、木鱼、佛足石、