首页 >
伽玛函数
✍ dations ◷ 2024-12-22 20:11:22 #伽玛函数
在数学中,
Γ
{displaystyle Gamma ,}
函数,也叫做伽玛函数(Gamma函数),是阶乘函数在实数与复数域上的扩展。如果
n
{displaystyle n}
为正整数,则:对于实数部分为正的复数
z
{displaystyle z}
,伽玛函数定义为:此定义可以用解析延拓原理,拓展到除去非正整数的整个复数域上。在概率论中常见此函数,在组合数学中也常见。Γ
{displaystyle Gamma ,}
函数可以通过欧拉(Euler)第二类积分定义:对复数
z
{displaystyle z,}
,我们要求
R
e
(
z
)
>
0
{displaystyle mathrm {Re} (z)>0}
。Γ
{displaystyle Gamma }
函数还可以通过对
e
−
t
{displaystyle mathrm {e} ^{-t},}
做泰勒展开,解析延拓到整个复平面:
Γ
(
z
)
=
∫
1
∞
t
z
−
1
e
t
d
t
+
∑
n
=
0
∞
(
−
1
)
n
n
!
1
n
+
z
{displaystyle Gamma (z)=int _{1}^{infty }{frac {t^{z-1}}{mathrm {e} ^{t}}}{rm {d}}t+sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}{frac {1}{n+z}}}这样定义的
Γ
{displaystyle Gamma }
函数在全平面除了
z
=
0
,
−
1
,
−
2
,
…
{displaystyle z=0,-1,-2,ldots }
以外的地方解析。Γ
{displaystyle Gamma }
函数也可以用无穷乘积的方式表示:这说明
Γ
(
z
)
{displaystyle Gamma (z)}
是亚纯函数,而
1
Γ
(
z
)
{displaystyle {frac {1}{Gamma (z)}}}
是全纯函数Γ
{displaystyle Gamma ,}
函数可以用无穷乘积表示:其中
γ
{displaystyle gamma ,}
是欧拉-马歇罗尼常数。⟹
Γ
(
α
)
λ
α
=
∫
0
∞
x
α
−
1
e
−
λ
x
d
x
{displaystyle implies {frac {Gamma left(alpha right)}{lambda ^{alpha }}}=int _{0}^{infty }x^{alpha -1}mathrm {e} ^{-lambda x}{rm {d}}x}Γ
{displaystyle Gamma ,}
函数的递推公式为:
Γ
(
x
+
1
)
=
x
Γ
(
x
)
{displaystyle Gamma (x+1)=xGamma (x)}
,对于正整数
n
{displaystyle n,}
,有可以说
Γ
{displaystyle Gamma ,}
函数是阶乘的推广。Γ
(
n
+
1
)
=
∫
0
∞
e
−
x
x
n
+
1
−
1
d
x
=
∫
0
∞
e
−
x
x
n
d
x
{displaystyle Gamma (n+1)=int _{0}^{infty }mathrm {e} ^{-x}x^{n+1-1}mathrm {d} x=int _{0}^{infty }mathrm {e} ^{-x}x^{n}{rm {d}}x}我们用分部积分法来计算这个积分:∫
0
∞
e
−
x
x
n
d
x
=
[
−
x
n
e
x
]
0
∞
+
n
∫
0
∞
e
−
x
x
n
−
1
d
x
{displaystyle int _{0}^{infty }mathrm {e} ^{-x}x^{n}mathrm {d} x=left_{0}^{infty }+nint _{0}^{infty }mathrm {e} ^{-x}x^{n-1}{rm {d}}x}当
x
=
0
{displaystyle x=0,}
时,
−
0
n
e
0
=
0
1
=
0
{displaystyle {tfrac {-0^{n}}{mathrm {e} ^{0}}}={tfrac {0}{1}}=0}
。当
x
{displaystyle x,}
趋于无穷大时,根据洛必达法则,有:lim
x
→
∞
−
x
n
e
x
=
lim
x
→
∞
−
n
!
⋅
0
e
x
=
0
{displaystyle lim _{xrightarrow infty }{frac {-x^{n}}{mathrm {e} ^{x}}}=lim _{xrightarrow infty }{frac {-n!cdot 0}{mathrm {e} ^{x}}}=0}
。因此第一项
[
−
x
n
e
x
]
0
∞
{displaystyle left_{0}^{infty }}
变成了零,所以:Γ
(
n
+
1
)
=
n
∫
0
∞
x
n
−
1
e
x
d
x
{displaystyle Gamma (n+1)=nint _{0}^{infty }{frac {x^{n-1}}{mathrm {e} ^{x}}}{rm {d}}x}等式的右面正好是
n
Γ
(
n
)
{displaystyle nGamma (n),}
。因此,递推公式为:此式可用来协助计算t分布概率密度函数、卡方分布概率密度函数、F分布概率密度函数等的累计概率。对任何实数α斯特灵公式能用以估计
Γ
(
z
)
{displaystyle Gamma (z)}
函数的增长速度。公式为:其中e约等于2.718281828459。对任何复数z,满足 Re(z) > 0,有于是,对任何正整数 m其中γ是欧拉-马歇罗尼常量。注意到在
Γ
{displaystyle Gamma }
函数的积分定义中若取
z
{displaystyle z,}
为实部大于零之复数、则积分存在,而且在右半复平面上定义一个全纯函数。利用函数方程并注意到函数
sin
(
π
z
)
{displaystyle sin(pi z),}
在整个复平面上有解析延拓,我们可以在
R
e
(
z
)
<
1
{displaystyle mathrm {Re} (z)<1}
时设从而将
Γ
{displaystyle Gamma ,}
函数延拓为整个复平面上的亚纯函数,它在
z
=
0
,
−
1
,
−
2
,
−
3
⋯
{displaystyle z=0,-1,-2,-3cdots }
有单极点,留数为许多编程语言或表格软件有提供Γ函数或对数的Γ函数,例如EXCEL。而对数的Γ函数还要再取一次自然指数才能获得Γ函数值。例如在EXCEL中,可使用GAMMALN函数,再用EXP,即可求得任意实数的伽玛函数的值。而在没有提供Γ函数的程序环境中,也能够过泰勒级数或斯特灵公式等方式来近似,例如Robert H. Windschitl在2002年提出的方法,其在十进制可获得有效数字八位数的精确度,已足以填满单精度浮点数的二进制有效数字24位:
相关
- 肠道肠脏,或称肠,是指消化系统中,由胃至肛门之间的消化管道,为大部分化学消化过程的所在地,将食物的营养吸收。肠脏主要分为小肠(十二指肠、空肠及回肠)及大肠(盲肠、结肠及直肠)两部分。
- 人口老化人口老龄化又称人口老化或人口高龄化、老龄化社会,是指因出生率降低和/或预期寿命延长导致年龄中位数增加的现象。大多数发达国家人口长寿,老龄人群变多;但发展中国家目前也出
- 海虱海虱是桡脚类下的鱼虱科生物。其下共有36个属,当中最著名的疮痂鱼虱属及鱼虱属就分别约有42和300个物种。它们是水生的 体外寄生虫,吃寄主的黏液、表皮组织及血液。其下的疮痂
- 彼奇湖坐标:10°13′57.00″N 61°37′41.00″W / 10.2325000°N 61.6280556°W / 10.2325000; -61.6280556彼奇湖(Pitch Lake)是一个奇特的沥青湖泊,该湖泊位于加勒比海的特立尼达
- 西尔维奥·贝卢斯科尼西尔维奥·贝卢斯科尼(意大利语:Silvio Berlusconi;1936年9月29日-),意大利政治人物、企业家,数度出任意大利总理,同时也是前AC米兰班主、传媒大亨、歌手、富翁。1994年投入意大利政
- N(NOsub2/sub)sub3/sub三硝基胺是一种氮氧化物,化学式为N(NO2)3。这种化合物在2010年由瑞典皇家工学院的研究者发现。此前曾有人猜测存在三硝基胺。 蒙哥马利和米歇尔斯1993年进行的理论计算表明该
- 硬木硬木(hardwood),或称硬植木,即为阔叶树材,指由被子植物门的树所生成的木材。硬木与又称做软木的针叶树材刚好成一对比。硬木一般密度较高及较硬实,但硬木及软木的真正硬度差异很大
- 西格陵兰暖流西格陵兰洋流(West Greenland Current)为一个弱小的冰冻洋流,沿着格陵兰西岸向北流动。西格陵兰洋流的起源为东格陵兰洋流在格陵兰南端的绕流。
- 对流层顶对流层顶是地球大气的对流层与平流层的分界面。对流层顶是指气温不再随高度而变冷,而且几乎不含水蒸汽。世界气象组织正式定义为:上述定义指出,大气垂直温度梯度的不连续性。
- 环锯术头部穿孔(Trepanation),又称颅骨穿孔术或环锯术,是一种外科手术干预法,在头皮与头盖骨上钻或挖一个孔,令到头颅的硬膜外露,以处理颅内疾病或其他相关的健康问题。人们相信这种方法