首页 >
伽玛函数
✍ dations ◷ 2025-04-02 09:10:48 #伽玛函数
在数学中,
Γ
{displaystyle Gamma ,}
函数,也叫做伽玛函数(Gamma函数),是阶乘函数在实数与复数域上的扩展。如果
n
{displaystyle n}
为正整数,则:对于实数部分为正的复数
z
{displaystyle z}
,伽玛函数定义为:此定义可以用解析延拓原理,拓展到除去非正整数的整个复数域上。在概率论中常见此函数,在组合数学中也常见。Γ
{displaystyle Gamma ,}
函数可以通过欧拉(Euler)第二类积分定义:对复数
z
{displaystyle z,}
,我们要求
R
e
(
z
)
>
0
{displaystyle mathrm {Re} (z)>0}
。Γ
{displaystyle Gamma }
函数还可以通过对
e
−
t
{displaystyle mathrm {e} ^{-t},}
做泰勒展开,解析延拓到整个复平面:
Γ
(
z
)
=
∫
1
∞
t
z
−
1
e
t
d
t
+
∑
n
=
0
∞
(
−
1
)
n
n
!
1
n
+
z
{displaystyle Gamma (z)=int _{1}^{infty }{frac {t^{z-1}}{mathrm {e} ^{t}}}{rm {d}}t+sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}{frac {1}{n+z}}}这样定义的
Γ
{displaystyle Gamma }
函数在全平面除了
z
=
0
,
−
1
,
−
2
,
…
{displaystyle z=0,-1,-2,ldots }
以外的地方解析。Γ
{displaystyle Gamma }
函数也可以用无穷乘积的方式表示:这说明
Γ
(
z
)
{displaystyle Gamma (z)}
是亚纯函数,而
1
Γ
(
z
)
{displaystyle {frac {1}{Gamma (z)}}}
是全纯函数Γ
{displaystyle Gamma ,}
函数可以用无穷乘积表示:其中
γ
{displaystyle gamma ,}
是欧拉-马歇罗尼常数。⟹
Γ
(
α
)
λ
α
=
∫
0
∞
x
α
−
1
e
−
λ
x
d
x
{displaystyle implies {frac {Gamma left(alpha right)}{lambda ^{alpha }}}=int _{0}^{infty }x^{alpha -1}mathrm {e} ^{-lambda x}{rm {d}}x}Γ
{displaystyle Gamma ,}
函数的递推公式为:
Γ
(
x
+
1
)
=
x
Γ
(
x
)
{displaystyle Gamma (x+1)=xGamma (x)}
,对于正整数
n
{displaystyle n,}
,有可以说
Γ
{displaystyle Gamma ,}
函数是阶乘的推广。Γ
(
n
+
1
)
=
∫
0
∞
e
−
x
x
n
+
1
−
1
d
x
=
∫
0
∞
e
−
x
x
n
d
x
{displaystyle Gamma (n+1)=int _{0}^{infty }mathrm {e} ^{-x}x^{n+1-1}mathrm {d} x=int _{0}^{infty }mathrm {e} ^{-x}x^{n}{rm {d}}x}我们用分部积分法来计算这个积分:∫
0
∞
e
−
x
x
n
d
x
=
[
−
x
n
e
x
]
0
∞
+
n
∫
0
∞
e
−
x
x
n
−
1
d
x
{displaystyle int _{0}^{infty }mathrm {e} ^{-x}x^{n}mathrm {d} x=left_{0}^{infty }+nint _{0}^{infty }mathrm {e} ^{-x}x^{n-1}{rm {d}}x}当
x
=
0
{displaystyle x=0,}
时,
−
0
n
e
0
=
0
1
=
0
{displaystyle {tfrac {-0^{n}}{mathrm {e} ^{0}}}={tfrac {0}{1}}=0}
。当
x
{displaystyle x,}
趋于无穷大时,根据洛必达法则,有:lim
x
→
∞
−
x
n
e
x
=
lim
x
→
∞
−
n
!
⋅
0
e
x
=
0
{displaystyle lim _{xrightarrow infty }{frac {-x^{n}}{mathrm {e} ^{x}}}=lim _{xrightarrow infty }{frac {-n!cdot 0}{mathrm {e} ^{x}}}=0}
。因此第一项
[
−
x
n
e
x
]
0
∞
{displaystyle left_{0}^{infty }}
变成了零,所以:Γ
(
n
+
1
)
=
n
∫
0
∞
x
n
−
1
e
x
d
x
{displaystyle Gamma (n+1)=nint _{0}^{infty }{frac {x^{n-1}}{mathrm {e} ^{x}}}{rm {d}}x}等式的右面正好是
n
Γ
(
n
)
{displaystyle nGamma (n),}
。因此,递推公式为:此式可用来协助计算t分布概率密度函数、卡方分布概率密度函数、F分布概率密度函数等的累计概率。对任何实数α斯特灵公式能用以估计
Γ
(
z
)
{displaystyle Gamma (z)}
函数的增长速度。公式为:其中e约等于2.718281828459。对任何复数z,满足 Re(z) > 0,有于是,对任何正整数 m其中γ是欧拉-马歇罗尼常量。注意到在
Γ
{displaystyle Gamma }
函数的积分定义中若取
z
{displaystyle z,}
为实部大于零之复数、则积分存在,而且在右半复平面上定义一个全纯函数。利用函数方程并注意到函数
sin
(
π
z
)
{displaystyle sin(pi z),}
在整个复平面上有解析延拓,我们可以在
R
e
(
z
)
<
1
{displaystyle mathrm {Re} (z)<1}
时设从而将
Γ
{displaystyle Gamma ,}
函数延拓为整个复平面上的亚纯函数,它在
z
=
0
,
−
1
,
−
2
,
−
3
⋯
{displaystyle z=0,-1,-2,-3cdots }
有单极点,留数为许多编程语言或表格软件有提供Γ函数或对数的Γ函数,例如EXCEL。而对数的Γ函数还要再取一次自然指数才能获得Γ函数值。例如在EXCEL中,可使用GAMMALN函数,再用EXP,即可求得任意实数的伽玛函数的值。而在没有提供Γ函数的程序环境中,也能够过泰勒级数或斯特灵公式等方式来近似,例如Robert H. Windschitl在2002年提出的方法,其在十进制可获得有效数字八位数的精确度,已足以填满单精度浮点数的二进制有效数字24位:
相关
- 四氯乙烯四氯乙烯,又称全氯乙烯,是一种有机化学品,被广泛用于干洗和金属除油,也被用来制造其他化学品和消费品。室温下是不易燃的液体。容易挥发,有刺激的甜味。很多人在空气含有百万分之
- 凤梨蛋白酶菠萝蛋白酶(英语:Bromelain,也简称为菠萝酶、菠萝酶、菠萝酵素)可以意指两种物质,其中一个是狭义指自菠萝科植物榨取出的蛋白酶,另一个则是广义指从榨取物中的其他成分与这些蛋白
- 脑部脑(英语:Brain)作为一个器官,是所有脊椎动物和大部分无脊椎动物都具有的神经系统中心。它位于头部,通常靠近感觉器官,如视觉器官。脑是脊椎动物身体中最复杂的器官。人类的大脑皮
- 行为遗传学行为遗传学研究领域集中在检视遗传在人类和动物的行为中扮演的角色。行为遗传学涵盖多个学科,包括生物学,遗传学,动物行为学,心理学,统计学,并且经常会涉及到“先天与后天”的讨论
- 杂食性动物杂食性是指吃植物、动物的一类的动物,这类动物什么都能吃,它们不用依靠单一类型的食物如植物或动物来维持生命,却可以只进食单一类型的食物来维持生命,因此对周遭环境有着较强的
- 动物园动物园或动物(学)公园是指把一些野生或外来动物放于围栏之类的地方内,供公众观赏的地方设施。发展到现代,动物园的规范与对专业的要求也渐趋严苛,除了需要能教育大众之外,大多还同
- 哈登阿瑟·哈登(英语:Arthur Harden,1865年10月12日-1940年6月17日),出生于英国曼彻斯特,英国生物化学家、皇家学会院士,1929年与汉斯·冯·奥伊勒-切尔平因对糖类的发酵以及发酵酶的研
- 肝斑黄褐斑(Melasma,chloasma faciei:854),又称肝斑、黑斑、黑皮病,是一种皮肤颜色变深为黄褐色的疾病,发生在孕妇身上时候被称为妊娠面斑(mask of pregnancy)。黄褐斑通常被认为是日晒
- 理查逊数理查逊数(Richardson number,缩写Ri),是一个无因次量,理查逊数代表浮力与惯性力效应之比,理查逊数愈大,浮力的影响愈重要。大气、海洋、湖泊等流场会因为温度或密度分布的不均匀而
- 半夏汤半夏散、半夏汤,出自《伤寒杂病论》。