首页 >
伽玛函数
✍ dations ◷ 2025-06-07 19:51:00 #伽玛函数
在数学中,
Γ
{displaystyle Gamma ,}
函数,也叫做伽玛函数(Gamma函数),是阶乘函数在实数与复数域上的扩展。如果
n
{displaystyle n}
为正整数,则:对于实数部分为正的复数
z
{displaystyle z}
,伽玛函数定义为:此定义可以用解析延拓原理,拓展到除去非正整数的整个复数域上。在概率论中常见此函数,在组合数学中也常见。Γ
{displaystyle Gamma ,}
函数可以通过欧拉(Euler)第二类积分定义:对复数
z
{displaystyle z,}
,我们要求
R
e
(
z
)
>
0
{displaystyle mathrm {Re} (z)>0}
。Γ
{displaystyle Gamma }
函数还可以通过对
e
−
t
{displaystyle mathrm {e} ^{-t},}
做泰勒展开,解析延拓到整个复平面:
Γ
(
z
)
=
∫
1
∞
t
z
−
1
e
t
d
t
+
∑
n
=
0
∞
(
−
1
)
n
n
!
1
n
+
z
{displaystyle Gamma (z)=int _{1}^{infty }{frac {t^{z-1}}{mathrm {e} ^{t}}}{rm {d}}t+sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}{frac {1}{n+z}}}这样定义的
Γ
{displaystyle Gamma }
函数在全平面除了
z
=
0
,
−
1
,
−
2
,
…
{displaystyle z=0,-1,-2,ldots }
以外的地方解析。Γ
{displaystyle Gamma }
函数也可以用无穷乘积的方式表示:这说明
Γ
(
z
)
{displaystyle Gamma (z)}
是亚纯函数,而
1
Γ
(
z
)
{displaystyle {frac {1}{Gamma (z)}}}
是全纯函数Γ
{displaystyle Gamma ,}
函数可以用无穷乘积表示:其中
γ
{displaystyle gamma ,}
是欧拉-马歇罗尼常数。⟹
Γ
(
α
)
λ
α
=
∫
0
∞
x
α
−
1
e
−
λ
x
d
x
{displaystyle implies {frac {Gamma left(alpha right)}{lambda ^{alpha }}}=int _{0}^{infty }x^{alpha -1}mathrm {e} ^{-lambda x}{rm {d}}x}Γ
{displaystyle Gamma ,}
函数的递推公式为:
Γ
(
x
+
1
)
=
x
Γ
(
x
)
{displaystyle Gamma (x+1)=xGamma (x)}
,对于正整数
n
{displaystyle n,}
,有可以说
Γ
{displaystyle Gamma ,}
函数是阶乘的推广。Γ
(
n
+
1
)
=
∫
0
∞
e
−
x
x
n
+
1
−
1
d
x
=
∫
0
∞
e
−
x
x
n
d
x
{displaystyle Gamma (n+1)=int _{0}^{infty }mathrm {e} ^{-x}x^{n+1-1}mathrm {d} x=int _{0}^{infty }mathrm {e} ^{-x}x^{n}{rm {d}}x}我们用分部积分法来计算这个积分:∫
0
∞
e
−
x
x
n
d
x
=
[
−
x
n
e
x
]
0
∞
+
n
∫
0
∞
e
−
x
x
n
−
1
d
x
{displaystyle int _{0}^{infty }mathrm {e} ^{-x}x^{n}mathrm {d} x=left_{0}^{infty }+nint _{0}^{infty }mathrm {e} ^{-x}x^{n-1}{rm {d}}x}当
x
=
0
{displaystyle x=0,}
时,
−
0
n
e
0
=
0
1
=
0
{displaystyle {tfrac {-0^{n}}{mathrm {e} ^{0}}}={tfrac {0}{1}}=0}
。当
x
{displaystyle x,}
趋于无穷大时,根据洛必达法则,有:lim
x
→
∞
−
x
n
e
x
=
lim
x
→
∞
−
n
!
⋅
0
e
x
=
0
{displaystyle lim _{xrightarrow infty }{frac {-x^{n}}{mathrm {e} ^{x}}}=lim _{xrightarrow infty }{frac {-n!cdot 0}{mathrm {e} ^{x}}}=0}
。因此第一项
[
−
x
n
e
x
]
0
∞
{displaystyle left_{0}^{infty }}
变成了零,所以:Γ
(
n
+
1
)
=
n
∫
0
∞
x
n
−
1
e
x
d
x
{displaystyle Gamma (n+1)=nint _{0}^{infty }{frac {x^{n-1}}{mathrm {e} ^{x}}}{rm {d}}x}等式的右面正好是
n
Γ
(
n
)
{displaystyle nGamma (n),}
。因此,递推公式为:此式可用来协助计算t分布概率密度函数、卡方分布概率密度函数、F分布概率密度函数等的累计概率。对任何实数α斯特灵公式能用以估计
Γ
(
z
)
{displaystyle Gamma (z)}
函数的增长速度。公式为:其中e约等于2.718281828459。对任何复数z,满足 Re(z) > 0,有于是,对任何正整数 m其中γ是欧拉-马歇罗尼常量。注意到在
Γ
{displaystyle Gamma }
函数的积分定义中若取
z
{displaystyle z,}
为实部大于零之复数、则积分存在,而且在右半复平面上定义一个全纯函数。利用函数方程并注意到函数
sin
(
π
z
)
{displaystyle sin(pi z),}
在整个复平面上有解析延拓,我们可以在
R
e
(
z
)
<
1
{displaystyle mathrm {Re} (z)<1}
时设从而将
Γ
{displaystyle Gamma ,}
函数延拓为整个复平面上的亚纯函数,它在
z
=
0
,
−
1
,
−
2
,
−
3
⋯
{displaystyle z=0,-1,-2,-3cdots }
有单极点,留数为许多编程语言或表格软件有提供Γ函数或对数的Γ函数,例如EXCEL。而对数的Γ函数还要再取一次自然指数才能获得Γ函数值。例如在EXCEL中,可使用GAMMALN函数,再用EXP,即可求得任意实数的伽玛函数的值。而在没有提供Γ函数的程序环境中,也能够过泰勒级数或斯特灵公式等方式来近似,例如Robert H. Windschitl在2002年提出的方法,其在十进制可获得有效数字八位数的精确度,已足以填满单精度浮点数的二进制有效数字24位:
相关
- 奶妈乳母,又称乳娘、奶娘、奶妈、奶母、奶婆,是雇用来以母乳喂哺婴儿的妇女。在古代,奶粉或其他母乳代用品未发明或未普及时,婴儿的生母如不能或不愿意哺育其子女,往往会雇用乳母。尤
- 奥林匹斯山奥林波斯山(希腊语:Όλυμπος)是希腊最高的一座山,位于爱琴海塞尔迈湾北岸,距希腊第二大城塞萨罗尼基约100公里。奥林波斯山由52座山峰组成,其中最高峰“Mytikas”意为前端突
- 语言相对论语言相对论(英语:linguistic relativity),也称为萨丕尔-沃夫假说(英语:Sapir–Whorf hypothesis),由语言学家兼人类学家爱德华·萨丕尔(Edward Sapir)及其学生本杰明·李·沃夫(Benjami
- 国家航空航天局美国国家航空航天局(英语: National Aeronautics and Space Administration ,缩写为NASA,/ˈnæsə/)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、与开展航
- 无定形无定形体,或称无定形体、无定形形固体,是其中的原子不按照一定空间顺序排列的固体,与晶体相对应。常见的无定形体包括玻璃和很多高分子化合物如聚苯乙烯等。只要冷却速度足够快
- 邓肯一世参数所指定的目标页面不存在,建议更正成存在页面或直接建立下列一个页面(建立前请先搜寻是否有合适的存在页面可以取代):邓肯·麦克克里南(中世纪盖尔语:Donnchad mac Crinain;现代
- 外消旋外消旋混合物(英语:racemic mixture、racemate,或称为 外消旋体)是等物质的量的一对对映体混合后得到的组成物。第一个制得的外消旋体是路易·巴斯德制得的酒石酸的外消旋混合物
- 安德鲁·杜安尼安德鲁·杜安尼(英语:Andrés Duany,1949年9月7日-)是一位美国建筑师、城市规划师,也是新城市主义大会(CNU)的创始人之一。杜安尼生于纽约市,但于1960年前在古巴长大。他曾就读于乔特
- 1814年1814年逝世人物列表:1月 - 2月 - 3月 - 4月 - 5月 - 6月 - 7月 - 8月 - 9月 - 10月 - 11月 - 12月
- 738年晋国曲沃之乱开始,前745年晋昭侯把曲沃(在今中国山西省曲沃县)封给其叔成师。前739年晋大臣潘父弑杀了晋昭侯,迎立曲沃桓叔。晋人发兵攻桓叔,桓叔退回曲沃。晋人共立昭侯子公子平