时滞微分方程

✍ dations ◷ 2025-12-02 10:31:50 #微分方程

在数学领域中, 时滞微分方程, 或延时微分方程 (DDE) 是一类微分方程, 其中未知函数的在确定时刻的导数由先前时刻函数所决定.

对于 x ( t ) R n {\displaystyle x(t)\in R^{n}} 来分析和研究解的性质.具有离散时滞的线性时滞微分方程

的特征方程是

特征方程的根 λ 被称为特征根或特征值, 解集通常被称为谱. 与常微分方程不同, 时滞微分方程的特征方程含有指数, 具有无限个特征值, 使得谱分析变得很困难, 但是谱对于 DDE 的分析仍然具有一些很好的性质. 例如, 虽然具有无限个特征值, 但是只有有限个特征值位于复平面的右侧.

特征方程是一个非线性特征问题, 有许多计算谱的数值方法. 少数的特殊情况可以显式地求解特征方程. 例如, 时滞微分方程

的特征方程是

这个方程对于变量 λ 有无穷多个复数解. 复解可表示为

其中 W K {\displaystyle W_{K}} 个分支.

相关

  • 斯蒂芬·库夫勒斯蒂芬·威廉·库夫勒(匈牙利语:Stephen William Kuffler,1913年8月24日-1980年10月11日),生于匈牙利塔普,匈牙利籍-美籍神经生理学家,被公认为“现代神经科学之父”。1966年,库夫勒
  • 大当家《大当家》(英文:The Master of The House),是民初情感电视剧。2013年5月18日开机,同年8月14日杀青,2013年12月取得发行许可证。2014年4月17日在武汉文艺频道和东方卫视同步全国首
  • 罪恶宗教上的罪是指一种违反道德规范的行为或者实施了这种行为的状态。通常这种行为准则由一个神(如亚伯拉罕诸教中的天主;上帝、神;真主)来裁定。罪经常用于指称一种被禁止或不被认
  • 华盛顿月刊《华盛顿月刊》(Washington Monthly)是一份总部位于美国华盛顿特区的双月刊非营利杂志,主要刊登关于美国政治和美国政府的文章。该杂志由查尔斯·彼得斯成立于1969年,起先是月刊
  • 变身怪医 (音乐剧)《变身怪医 》(Jekyll & Hyde)改编自罗伯特·路易斯·史蒂文森的小说:《化身博士》,内容讲述人性内心善与恶的挣扎。该剧由法兰克·怀德恩作曲,李斯莉·布里克斯谱词,在百老汇普利
  • 天安门 (电影)电影《天安门》拍摄于2009年,由叶大鹰执导,潘粤明、郭柯宇等主演。电影以1949年为背景,讲述了当时装修天安门城楼的过程。
  • 尼法朵拉·唐克斯尼法朵拉·唐克斯(英语:Nymphadora Tonks),台灣譯名为小仙女·東施,是英国作家J·K·罗琳的儿童奇幻小说《哈利·波特》系列中的人物,于第五集《哈利·波特与凤凰社》中首次出现。
  • 打神打神为红线女著名曲目之一,改编自著名民间故事“王魁负桂英”,为《焚香记》中之一折,粤剧作曲家杨子静之作品。才子王魁(即王俊民)失意而丐食于街头,被名妓焦桂英赏识及倾心。王魁
  • 粗气符重音符号 短音符( ˘ ) 抑扬符 / 倒折音符 / ( ˇ ) 软音符( ¸ ) 扬抑符 / 折音符( ˆ ) 曲音符 / 分音符( ¨ ) 点( · ) 上钩符(  ̉ ) 触角(  ̛ ) 长音符( ˉ ) 反尾形符( ˛ ) 上圆圈( ˚
  • 正义联盟:闪点悖论《正义联盟:闪点悖论》(英语:)是2013年一部录像带首映的超级英雄动画电影,改编自2011年漫画《闪点》,出自于Geoff Johns和Andy Kubert。导演为Jay Oliva,而脚本则是由吉姆·克里格