时滞微分方程

✍ dations ◷ 2025-11-27 17:18:09 #微分方程

在数学领域中, 时滞微分方程, 或延时微分方程 (DDE) 是一类微分方程, 其中未知函数的在确定时刻的导数由先前时刻函数所决定.

对于 x ( t ) R n {\displaystyle x(t)\in R^{n}} 来分析和研究解的性质.具有离散时滞的线性时滞微分方程

的特征方程是

特征方程的根 λ 被称为特征根或特征值, 解集通常被称为谱. 与常微分方程不同, 时滞微分方程的特征方程含有指数, 具有无限个特征值, 使得谱分析变得很困难, 但是谱对于 DDE 的分析仍然具有一些很好的性质. 例如, 虽然具有无限个特征值, 但是只有有限个特征值位于复平面的右侧.

特征方程是一个非线性特征问题, 有许多计算谱的数值方法. 少数的特殊情况可以显式地求解特征方程. 例如, 时滞微分方程

的特征方程是

这个方程对于变量 λ 有无穷多个复数解. 复解可表示为

其中 W K {\displaystyle W_{K}} 个分支.

相关

  • 王锡阐王锡阐(1628年-1682年),字晓庵,号余不、天同一生,江苏吴江人,明末清初天文学家暨数学家。明亡后,终生不仕,一生钻研历法、天象。曾独立发明计算金星凌日、水星凌日的方法,并提出推算日
  • ζ函数黎曼ζ函数 .mw-parser-output .serif{font-family:Times,serif}ζ(s) 的定义如下: 设一复数 s 使得 Re(s) > 1,则定义:它亦可以用积分定义:在区域 {s : Re(s) > 1} 上,此无穷级
  • 七氟丁酸七氟丁酸(英语:Heptafluorobutyric acid,或称作全氟丁酸,Perfluorobutanoic acid,缩写HFBA或PFBA)是化学式为 C3F7COOH的有机化合物,可看作是丁酸的全氟衍生物,常在反相高效液相色谱
  • 赫耳墨斯·罗德里格斯·达·丰塞卡埃尔梅斯·罗德里格斯·达·丰塞卡(Hermes Rodrigues da Fonseca,1855年5月12日-1923年9月9日),巴西军人和政治家。首任总统迪奥多罗·达·丰塞卡的侄子。1906年任战争部长,1910年
  • 胡仁伟胡仁玮(1983年2月21日-) ,为台湾的棒球选手之一,曾效力于中华职棒米迪亚暴龙,守备位置为二垒手。
  • 瓶尔小草目瓶尔小草目是蕨类植物的一个小类群。传统上,它们被归于蕨类植物门内,原本是做成一个科,但后来则被当做一个目。在某些分类法里,此一类群被置于一单独的门-瓶尔小草门里。但现今的
  • 英国电影分级委员会英国电影分级委员会(英语:British Board of Film Classification)是一个非政府组织,由电影业界资助,负责英国全国的电影分级和审查。根据2010年影像录音法(英语:Video Recordings A
  • 幻兽辞典‘幻兽辞典’(中文《幻想动物学教科书》、《想像的动物》)()豪尔赫·路易斯·博尔赫斯、玛格丽塔·格雷罗(Margarita Guerrero)两人共同写的文学作品。第1版‘(幻兽动物案内)’在195
  • 小奇兵 (电视电影)小奇兵(原文为Caravan of Courage: An Ewok Adventure)是部1984年制作的电视电影。台湾于1985年2月18日上映。本片为介于‘星球大战’系列‘帝国反击战’与‘绝地大反攻’中间
  • 联明抗清联明抗清又称明末农民军联明抗清,是南明时期原农民起义军余部同南明皇室共同抗清的事件。在农民军里最早提出联合明朝官军抗清的而是在明末。农民军的主力进入山西,进逼北京时