在几何学中,倒角十二面体是一种凸多面体,由12个五边形和30个六边形组成,那30个六边形是全等的,惟非正六边形。倒角十二面体共有42个面、120个边和80个顶点,是五角化截半二十面体的对偶多面体。
是由正十二面体经由倒角变换产生的多面体,即是将正十二面体中的30条边以六边形取代所形成的凸多面体,因此倒角二十面体共有30个六边形,而原本的五边形被保留,但倒角变换产生的六边形非正边形。
交错截角菱形三十面体与倒角十二面体是相同的多面体,但是构成方式不太相同。交错截角菱形三十面体是经过交错截角变换构成的,即将其顶点不全部截掉,而是交错截去,康威符号计为h,对于菱形三十面体会造成两种结果:仅切去相邻五个面的顶点以及仅切去相邻三个面的顶点,而仅有切去相邻五个面的顶点的多面体与倒角二十面体等价,因此若称为交错截角菱形三十面体存在歧意:可能为倒角二十面体或倒角十二面体。
交错截角菱形三十面体就是切去顶点的菱形三十面体,但是只能切去相邻五个面的顶点。这12个order-5的顶点可以被截成等长的,这使得原来的菱形面变成非正六边形,截去的顶点成为正五边形。它在顶点配置维的两面角是arccos(-1/sqrt(5)) = 116.565度,另一个在的两面角近似值为121.717 度。