拓扑空间

✍ dations ◷ 2025-04-26 11:58:13 #拓扑空间

拓扑空间(英语:Topological space)是一种数学结构,可以在上头形式化地定义出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。

拓扑空间是一个集合  X {displaystyle X}  和其上定义的拓扑结构 τ {displaystyle tau } 组成的二元组 ( X , τ ) {displaystyle (X,tau )} X {displaystyle X}  的元素  x {displaystyle x}  通常称为拓扑空间  ( X , τ ) {displaystyle (X,tau )} 的点。而拓扑结构 τ {displaystyle tau } 一词涵盖了开集,闭集,邻域,开核,闭包,导集,滤子等若干概念。从这些概念出发,可以给拓扑空间 ( X , τ ) {displaystyle (X,tau )} 作出若干种等价的定义。在教科书中最常见的定义是从开集开始的。 

X {displaystyle X}  的子集的集合族 O {displaystyle {mathfrak {O}}} 称为开集系(其中的元素称为开集),当且仅当其满足如下开集公理:

从开集出发定义其它各概念:

X {displaystyle X} 的子集的集合族 F {displaystyle {mathfrak {F}}} 称为闭集系(其中的元素称为闭集),当且仅当其满足如下闭集公理:

(显然,闭集是开集的对偶概念)。

从闭集出发定义其它各概念:

X {displaystyle X} 的映射 U : X P ( P ( X ) ) {displaystyle {mathfrak {U}}:Xto P(P(X))} P ( P ( X ) ) {displaystyle P(P(X))} X {displaystyle X} 的幂集的幂集)。这样 U {displaystyle {mathfrak {U}}} X {displaystyle X} 的每个点 x {displaystyle x} 映射至 X {displaystyle X} 的子集族 U ( x ) {displaystyle {mathfrak {U}}(x)} U ( x ) {displaystyle {mathfrak {U}}(x)} 称为 x {displaystyle x} 的邻域系( U ( x ) {displaystyle {mathfrak {U}}(x)} 的元素称为 x {displaystyle x} 的邻域),当且仅当对任意的 x X {displaystyle xin X} U ( x ) {displaystyle {mathfrak {U}}(x)} 满足如下邻域公理:

从邻域出发定义其它概念:

X {displaystyle X} 的幂集 P ( X ) {displaystyle P(X)} 上的一元运算 c : P ( X ) P ( X ) {displaystyle c:P(X)to P(X)} (即将 X {displaystyle X} 的子集A映射为 X {displaystyle X} 的子集 c ( A ) {displaystyle c(A)} )称为闭包运算(像称为原像的闭包)。当且仅当运算 c {displaystyle c} 满足下述的闭包公理:

集合 A {displaystyle A} 的闭包通常记为 A ¯ {displaystyle {overline {A}}}

从闭包出发定义其它概念:

X {displaystyle X} 的幂集 P ( X ) {displaystyle P(X)} 上的一元运算 o : P ( X ) P ( X ) {displaystyle o:P(X)to P(X)} (即将 X {displaystyle X} 的子集A映射为 X {displaystyle X} 的子集 o ( A ) {displaystyle o(A)} )称为开核运算(像称为原像的开核或内部)。当且仅当运算 o {displaystyle o} 满足如下开核公理:

集合 A {displaystyle A} 的开核通常记为 A {displaystyle A^{circ }} 。(显然,开核运算是闭包运算的对偶概念)。

从开核出发定义其它概念:

X {displaystyle X} 的幂集 P ( X ) {displaystyle {mathcal {P}}(X)} 上的一元运算 d : P ( X ) P ( X ) {displaystyle d:{mathcal {P}}(X)to {mathcal {P}}(X)} (即将 X {displaystyle X} 的子集 A {displaystyle A} 映射为 X {displaystyle X} 的子集 d ( A ) {displaystyle d(A)} )称为导集运算(像称为原像的导集),当且仅当 d {displaystyle d} 满足以下导集公理:

从导集出发定义其它概念:

同一个全集可以拥有不同的拓扑,有些是有用的,有些是平庸的,这些拓扑之间可以形成一种偏序关系。当拓扑 T 1 {displaystyle {mathfrak {T}}_{1}} 的每一个开集都是拓扑 T 2 {displaystyle {mathfrak {T}}_{2}} 的开集时,称拓扑 T 2 {displaystyle {mathfrak {T}}_{2}} 比拓扑 T 1 {displaystyle {mathfrak {T}}_{1}} 更细,或称拓扑 T 1 {displaystyle {mathfrak {T}}_{1}} 比拓扑 T 2 {displaystyle {mathfrak {T}}_{2}} 更粗。

仅依赖于特定开集的存在而成立的结论,在更细的拓扑上依然成立;类似的,仅依赖于特定集合不是开集而成立的结论,在更粗的拓扑上也依然成立。

最粗的拓扑是由空集和全集两个元素构成的拓扑,最细的拓扑是离散拓扑,这两个拓扑都是平庸的。

在有些文献中,我们也用大小或者强弱来表示这里粗细的概念。

类似定义拓扑空间,连续映射也有基于开集,闭集,开核,闭包和邻域等概念的等价定义。

拓扑空间上的一个映射 f {displaystyle f} 称为连续映射,当且仅当它满足以下条件之一:

同胚映射是一个连续的双射,并且它的逆映射也连续。两个拓扑空间之间存在同胚映射,则称这两个空间是同胚的。从拓扑学的观点上来讲,同胚的空间是等同的。

拓扑空间作为对象,连续映射作为态射,构成了拓扑空间范畴,它是数学中的一个基础性的范畴。试图通过不变量来对这个范畴进行分类的想法,激发和产生了整个领域的研究工作,包括同伦论、同调论和K-理论。

给定拓扑空间(X,τ),A是X的子集,有以下概念(继续使用上面的符号):

网的目的在推广序列及极限,网的收性称作Moore-Smith收敛。其关键在于以有向集合代替自然数集 N {displaystyle mathbb {N} }

空间 X {displaystyle X} 上的一个网 ( x α ) α A {displaystyle (x_{alpha })_{alpha in A}} 是从有向集合 A {displaystyle A} 映至 X {displaystyle X} 的映射。

若存在 x X {displaystyle xin X} ,使得对每个 x {displaystyle x} 的邻域 U {displaystyle U} 都存在 β A {displaystyle beta in A} ,使得 α β x α U {displaystyle alpha geq beta Rightarrow x_{alpha }in U} ,则称网 ( x α ) α A {displaystyle (x_{alpha })_{alpha in A}} 收敛至 x {displaystyle x}

几乎所有点集拓扑学的基本概念都能表述作网的收敛性,请参阅主条目网

3点集 X={a,b,c}的拓扑总共有29个,可分为九类,具体如下:

依据点和集合分离的程度、大小、连通程度、紧性等。可以对拓扑空间进行各种各样的分类。并且由于这些分类产生了许多不同的术语。

以下假设X为一个拓扑空间。

详细资料请参照分离公理以及相关条码。有些术语在老的文献中采用了不同地定义方式,请参照分离公理的历史。

(详细资料请参照紧集)

可度量性意味着可赋予空间一个度量,使之给出该空间的拓扑。目前已有许多版本的度量化定理,其中最著名的是Urysohn度量化定理:一个第二可数的正则豪斯多夫空间可被度量化。由此可导出任何第二可数的流形皆可度量化。

对于任一类代数结构,我们都可以考虑其上的拓扑结构,并要求相关的代数运算是连续映射。例如,一个拓扑群 G {displaystyle G} 乃是一个拓扑空间配上连续映射 m : G × G G {displaystyle m:Gtimes Grightarrow G} (群乘法)及 i : G G {displaystyle i:Grightarrow G} (逆元),使之具备群结构。

同样地,可定义拓扑向量空间为一个赋有拓扑结构的向量空间,使得加法与纯量乘法是连续映射,这是泛函分析的主题;我们可以类似地定义拓扑环、拓扑域等等。

结合拓扑与代数结构,往往可以引出相当丰富而实用的理论,例如微分几何探究的主齐性空间。在代数数论及代数几何中,人们也常定义适当的拓扑结构以简化理论,并得到较简明的陈述;如数论中的局部域(一种拓扑域),伽罗瓦理论中考虑的Krull拓扑(一种特别的拓扑群),以及定义形式概形所不可少的I-进拓扑(一种拓扑环)等等。

拓扑空间也可能拥有自然的序结构,例子包括:


参见拓扑学。

n个元素的集上总拓扑数规律

邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 阿匹斯阿匹斯(英语:Apis (god))。古埃及孟斐斯神祇之一。为一公牛形象,其事迹反映于托勒密王朝时期祭司历史学家曼内托的著述中,亦于相关的文物中得到出现,具有重大地宗教影响与历史意义
  • 萨克森国王腓特烈·奥古斯特三世弗里德里希·奥古斯特三世(Friedrich August III.,1865年5月25日-1932年2月18日),全名弗里德里希·奥古斯特·约翰·路德维希·卡尔·古斯塔夫·格雷格尔·菲力普(Friedrich Augus
  • 周长楫周长楫(1938年7月- ),中国语言学家,现任厦门大学中文系教授。他担任过汉语史硕士导师,也是全国汉语方言学会理事。他在担任中文系教授的时候致力于闽南语以及闽南文化的推广以及发
  • 安迪斯·诺西奥尼安德烈斯·诺西奥尼(西班牙语:Andrés Nocioni,1979年11月30日-),阿根廷职业篮球运动员,身高6尺7寸,体重225磅,司职小前锋。在2004年NBA选秀落选,但最终被芝加哥公牛签下。
  • 徽墨徽墨,是中国传统墨中最富盛名的一种,因其主要产地徽州府而得名,为知名文房四宝之一。徽墨发源于晚唐年间,时值战乱,大批良匠南下避祸,易州制墨能手奚超父子定居歙州。二人利用皖南
  • 李正信李正信(韩语:이정신,英语:Lee Jung Shin,日语:イ・ジョンシン,1991年9月15日-),韩国三人男子乐团CNBLUE成员,担任贝斯手。出生地于京畿道高阳市一山,在韩国出道前曾在日本以独立乐队活动
  • 村本博之村本博之(1966年-2010年4月10日),日本人,路透社东京分社摄影记者,2010年4月11日采访泰国红衫军示威活动军民冲突时遭子弹击中胸部身亡,终年43岁。村本博之东京都出身,已婚有2个孩子
  • 谭抒真谭抒真(1907年6月10日-2002年11月28日),男,汉族,山东潍县人,中国音乐教育家、乐器制作理论家,中国小提琴制作的开创者,上海音乐学院原副院长。
  • 尔湾 (加利福尼亚州)尔湾或欧文(Irvine)是美国加利福尼亚州橙县的一个城市,坐落于该县中部,中上阶层家庭聚居。面积180.5平方公里,根据2010年人口普查结果,尔湾市共有212,375人,拉丁裔占一成,亚太裔占近
  • 方兴东方兴东(1969年-),浙江义乌人,中国博客网的创始人,其评论文章常见于颇具争议的环球时报。曾卷入与学术诚信(或学术不端)、职业操守和操纵舆论等相关的一些批评。甚至有媒体将其描述为