置换的奇偶性

✍ dations ◷ 2025-04-02 19:34:44 #群论,置换,奇偶性,包含证明的条目

在数学中,当是一个至少有两个元素的有限集合时,的置换(即从到的双射)可分为大小相同的两类:奇置换与偶置换。如果固定了任何一个全序,的一个置换 σ {\displaystyle \sigma } 中二元组 x , y {\displaystyle x,y} 的交错特征。置换的符号另一个更一般的符号为列维-奇维塔符号( ϵ σ {\displaystyle \epsilon _{\sigma }} 到的所有映射上,而在非双射映射上取值为0。

置换的符号可以清晰地表达为

这里 N ( σ ) {\displaystyle N(\sigma )} 是分解中对换的个数。尽管这样一个分解不是惟一的,所有分解中对换个数的奇偶性是相同的,蕴含着置换的符号是良定义的。

考虑集合{1,2,3,4,5}的置换σ,它将初始排列12345变为34521。可以通过三个对换得到:首先交换1和3的位置,然后交换2和4,最后交换1和5。这证明了给定的置换σ是奇的。利用置换一文中的记号,我们可写成 σ = ( 1 2 3 4 5 3 4 5 2 1 ) = ( 1 3 5 ) ( 2 4 ) = ( 1 5 ) ( 2 4 ) ( 1 3 ) {\displaystyle \sigma ={\begin{pmatrix}1&2&3&4&5\\3&4&5&2&1\end{pmatrix}}={\begin{pmatrix}1&3&5\end{pmatrix}}{\begin{pmatrix}2&4\end{pmatrix}}={\begin{pmatrix}1&5\end{pmatrix}}{\begin{pmatrix}2&4\end{pmatrix}}{\begin{pmatrix}1&3\end{pmatrix}}} }的所有置换之对称群,我们可总结为映射

将每个置换映为其符号是一个群同态。

进一步,我们见到偶置换组成的一个子群。这就是个字母上的交错群,记作。它是符号同态的核。奇置换不能组成一个子群,因为两个奇置换的复合是偶置换,但它们是(在中)的一个陪集。

如果>1,则中偶置换与奇置换一样多;从而包含!/2个置换。(原因:如果σ是偶的,则 (12)σ是奇的;如果σ是奇的,则 (12)σ是偶的;这两个映射互逆。)

一个轮换是偶的当且仅当它的长度是奇的。这得自如下类似公式

特别地,为了确定给定的置换是偶的还是奇的,将它写成不交轮换的乘积。这个置换是奇的当且仅当这个分解包含奇数个偶长度的轮换。

每个奇数阶置换必须是偶的;反之一般不成立。

任意置换可以由一列对换产生:对第一个对换我们将置换的第一个元素放到它恰当的位置,第二个对换放第二个元素,等等。给定一个置换σ,我们可用无数种方式将其写成对换之积。我们要证明所有这样一个分解,要么都有偶数个对换,要么有奇数个对换。

假设我们有两个这样的分解:

我们要证明k'与m'要么都是偶的,要么都是奇的。

每个对换可以写成奇数个相邻元素的对换之乘积,例如

如果我们将上面的T'1...T'k'与Q'1...Q'm'中每个对换作这样的分解,我们得到一个新的分解:

这里所有1... 1...是相邻对换, − '是偶数, − '是偶数。

现在将T1的逆与σ复合。1是两个相邻数 (,  + 1)的对换,所以与σ相比,新置换σ(,  + 1)恰好少一个(若 (, + 1)是σ的反向对)或多一个反向对(若 (, + 1)不是σ的反向对)。然后以相同的方法应用到2, 3, ... 的逆,“消解”了置换σ。最后我们得到了恒同置换,它的是零,这意味着首先的(σ)减去是偶数。

对另一个置换1...我们对同样的事情,从而首先的(σ)减去m是偶数

这样 − 是偶数,这就是我们要证明的。

现在我们可以定义置换σ是偶的,如果(σ)是偶数;是奇的,如果(σ)是奇数。这与首先给出的定义相同,但现在清晰地看到每个置换不是偶的就是奇的。

另一个证明利用多项式

例如在 = 3的情形,我们有

现在对{1,...,}的一个给定置换σ,我们定义

因为多项式 P ( x σ ( 1 ) , , x σ ( n ) ) {\displaystyle P(x_{\sigma (1)},\dots ,x_{\sigma (n)})} 一个呈示,使用生成元为 τ 1 , , τ n 1 {\displaystyle \tau _{1},\dots ,\tau _{n-1}} ,  + 1)。所有的关系将一个词的长度保持或改变2。从一个偶数长词开始使用这些关系后总得到偶数长词,对奇数长词也类似。从而可以毫无歧义地称中由偶数长词表示的元素是偶的,由奇数长词表示的元素是奇的。

相关

  • 在世超级人瑞列表本列表依年龄长幼排列记录经认证的超级人瑞(年龄超过110岁者)。据估计已有150到600人活到了110岁 ,不过受限于部分区域地理偏远与年代久远等资讯流通问题,导致并非所有人瑞都在
  • mosquito-borne disease蚊子传播的疾病包括各种以蚊子为主要传播载体的疾病,包括有由病毒、寄生虫或其他病原体引起的疾病。在各种以动物为传播载体的疾病中,蚊子占有相当大的比重,从动物传动物、动物
  • 扒原壳鲍鱼扒原壳鲍鱼,为一道中国名菜,为鲁菜胶东派系的代表菜之一。主要原料为鲍鱼。此菜在制作时,首先将鲍鱼肉部分分离后制熟,然后洗净原有的鲍鱼壳,后将鲍鱼肉放入壳内。
  • 生果生果是指可以生食的植物果实;主要熟食之植物果实则称蔬菜。生产生果的植物称为果树。生果含大量的水溶糖分,很多还含有挥发性芳香物质。植物果实中汁液多者,亦称水果;相反,少汁液
  • N-乙醯葡糖胺-乙酰葡糖胺(GlcNAc;NAG)是葡糖胺的-乙酰衍生物,分子式C8H15NO6。NAG与NAM为组成细菌细胞壁的单体,与葡糖醛酸为透明质酸的单体。NAG也是甲壳素的聚合单体。细菌疾病 · 科莱毒
  • 亚美尼亚国家图书馆亚美尼亚国家图书馆(亚美尼亚语: Հայաստանի Ազգային Գրադարան)是亚美尼亚的国家图书馆,位于该国首都耶烈万,1832年创建。现在的建筑则建造于1939年,由亚
  • ATP-柠檬酸裂解酶ATP-柠檬酸裂解酶(英语:ATP citrate lyase,又直接简称柠檬酸裂解酶)是脂肪酸生物合成中催化重要步骤的一个酶。该步在脂肪酸合成中发生,是因为ATP-柠檬酸裂解酶是糖代谢(产能)与产
  • 王牌接线员拉里丹尼尔·劳伦斯·怀特尼(英语:Daniel Lawrence Whitney,1963年2月17日-),常用艺名“王牌接线员拉里”,是美国的栋笃笑演员、演员、乡村音乐艺术家,曾从事无线电相关工作。他是Blue C
  • 金兹堡-朗道方程金兹堡-朗道方程,或金兹堡-朗道理论,是由维塔利·金兹堡和列夫·朗道在1950年提出的一个描述超导现象的理论。早期的金兹堡-朗道方程只是一个唯象的数学模型,从宏观的角度描述
  • 石黑成纲石黑成纲(生年不详—1581年8月5日)是日本战国时代至安土桃山时代的武将。通称左近藏人。别名成亲。越中国砺波郡木舟城城主。属于奈良时代的豪族砺波氏流越中石黑氏的庶流,不过