置换的奇偶性

✍ dations ◷ 2025-09-11 10:34:26 #群论,置换,奇偶性,包含证明的条目

在数学中,当是一个至少有两个元素的有限集合时,的置换(即从到的双射)可分为大小相同的两类:奇置换与偶置换。如果固定了任何一个全序,的一个置换 σ {\displaystyle \sigma } 中二元组 x , y {\displaystyle x,y} 的交错特征。置换的符号另一个更一般的符号为列维-奇维塔符号( ϵ σ {\displaystyle \epsilon _{\sigma }} 到的所有映射上,而在非双射映射上取值为0。

置换的符号可以清晰地表达为

这里 N ( σ ) {\displaystyle N(\sigma )} 是分解中对换的个数。尽管这样一个分解不是惟一的,所有分解中对换个数的奇偶性是相同的,蕴含着置换的符号是良定义的。

考虑集合{1,2,3,4,5}的置换σ,它将初始排列12345变为34521。可以通过三个对换得到:首先交换1和3的位置,然后交换2和4,最后交换1和5。这证明了给定的置换σ是奇的。利用置换一文中的记号,我们可写成 σ = ( 1 2 3 4 5 3 4 5 2 1 ) = ( 1 3 5 ) ( 2 4 ) = ( 1 5 ) ( 2 4 ) ( 1 3 ) {\displaystyle \sigma ={\begin{pmatrix}1&2&3&4&5\\3&4&5&2&1\end{pmatrix}}={\begin{pmatrix}1&3&5\end{pmatrix}}{\begin{pmatrix}2&4\end{pmatrix}}={\begin{pmatrix}1&5\end{pmatrix}}{\begin{pmatrix}2&4\end{pmatrix}}{\begin{pmatrix}1&3\end{pmatrix}}} }的所有置换之对称群,我们可总结为映射

将每个置换映为其符号是一个群同态。

进一步,我们见到偶置换组成的一个子群。这就是个字母上的交错群,记作。它是符号同态的核。奇置换不能组成一个子群,因为两个奇置换的复合是偶置换,但它们是(在中)的一个陪集。

如果>1,则中偶置换与奇置换一样多;从而包含!/2个置换。(原因:如果σ是偶的,则 (12)σ是奇的;如果σ是奇的,则 (12)σ是偶的;这两个映射互逆。)

一个轮换是偶的当且仅当它的长度是奇的。这得自如下类似公式

特别地,为了确定给定的置换是偶的还是奇的,将它写成不交轮换的乘积。这个置换是奇的当且仅当这个分解包含奇数个偶长度的轮换。

每个奇数阶置换必须是偶的;反之一般不成立。

任意置换可以由一列对换产生:对第一个对换我们将置换的第一个元素放到它恰当的位置,第二个对换放第二个元素,等等。给定一个置换σ,我们可用无数种方式将其写成对换之积。我们要证明所有这样一个分解,要么都有偶数个对换,要么有奇数个对换。

假设我们有两个这样的分解:

我们要证明k'与m'要么都是偶的,要么都是奇的。

每个对换可以写成奇数个相邻元素的对换之乘积,例如

如果我们将上面的T'1...T'k'与Q'1...Q'm'中每个对换作这样的分解,我们得到一个新的分解:

这里所有1... 1...是相邻对换, − '是偶数, − '是偶数。

现在将T1的逆与σ复合。1是两个相邻数 (,  + 1)的对换,所以与σ相比,新置换σ(,  + 1)恰好少一个(若 (, + 1)是σ的反向对)或多一个反向对(若 (, + 1)不是σ的反向对)。然后以相同的方法应用到2, 3, ... 的逆,“消解”了置换σ。最后我们得到了恒同置换,它的是零,这意味着首先的(σ)减去是偶数。

对另一个置换1...我们对同样的事情,从而首先的(σ)减去m是偶数

这样 − 是偶数,这就是我们要证明的。

现在我们可以定义置换σ是偶的,如果(σ)是偶数;是奇的,如果(σ)是奇数。这与首先给出的定义相同,但现在清晰地看到每个置换不是偶的就是奇的。

另一个证明利用多项式

例如在 = 3的情形,我们有

现在对{1,...,}的一个给定置换σ,我们定义

因为多项式 P ( x σ ( 1 ) , , x σ ( n ) ) {\displaystyle P(x_{\sigma (1)},\dots ,x_{\sigma (n)})} 一个呈示,使用生成元为 τ 1 , , τ n 1 {\displaystyle \tau _{1},\dots ,\tau _{n-1}} ,  + 1)。所有的关系将一个词的长度保持或改变2。从一个偶数长词开始使用这些关系后总得到偶数长词,对奇数长词也类似。从而可以毫无歧义地称中由偶数长词表示的元素是偶的,由奇数长词表示的元素是奇的。

相关

  • 游走鲸走鲸(学名:Ambulocetus natans),又名陆行鲸、游走鲸,陆行鲸科走鲸属的一种,是一种早期的鲸鱼,可以同时行走及游泳。走鲸是过渡化石,显示了鲸鱼如何从陆上的哺乳动物演化出来。走鲸的
  • 马克斯·冯·劳厄马克斯·冯·劳厄(德语:Max von Laue,1879年10月9日-1960年4月24日),德国物理学家,因发现晶体中X射线的衍射现象而获得1914年诺贝尔物理学奖。1879年10月9日,马克斯·劳厄出生于科布
  • 国家档案馆国家发展委员会档案管理局(简称档案管理局、档管局)是中华民国的国家档案馆(英语:National archives),为中华民国政府档案之最高主管机关,隶属国家发展委员会,局本部位于新北市新庄
  • Chen Boie, 1822 Cygnopsis Brandt, 1836 Cycnopsis Agassiz, 1846 Eulabeia Reichenbach, 1852 Philacte Bannister, 1870 Heterochen Short, 1970雁属(学名:Anser)是雁形目
  • 克莱因瓶在数学领域中,克莱因瓶(德语:Kleinsche Flasche)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分。克莱因瓶最初的概念提出是由德国数学家费利克斯·克莱因提
  • 军事代表局中国人民解放军军徽中央军委装备发展部军事代表局,位于北京市,是中央军委装备发展部下属局,负责该部的军事代表工作。2016年改革前,中国人民解放军总装备部陆军装备科研订购部下
  • 白俄罗斯商人全国罢工委员会白俄罗斯商人全国罢工委员会 – 是未注册的白俄罗斯的组织的任务是保护公民的权利(包括组织反对人权与公民的合法权益侵害抗议)。白俄罗斯商人罢工委员会成立1996年。2003年11
  • 天主教马耳他总教区天主教马耳他总教区(拉丁语:Archidioecesis Melitensis o Melevitanus、马耳他语:Arċidjoċesi ta' Malta)是罗马天主教在马耳他的一个总教区、该国两个天主教教区之一。下辖戈
  • YKKYKK株式会社(英语:YKK Corporation、日语:YKK株式会社),公司名称之由来为旧社名吉田工业株式会社的日文缩写(),总公司设立在日本东京都千代田区,为日本大型制造商,另设有建材事业部YKK
  • 吕熊吕熊(约1642年-约1723年),字文兆,号逸田。江苏吴县人。生卒年不详。其父吕天裕,不事清朝,命吕熊学医,勿参与科举。吕熊身长七尺,戟髯,目光炯炯有神。性情孤冷,举止怪僻,好游历,足迹半天下