首页 >
椭圆形
✍ dations ◷ 2025-02-23 10:14:35 #椭圆形
在数学中,椭圆是平面上到两个相异固定点的距离之和为常数的点之轨迹。根据该定义,可以用手绘椭圆:先准备一条线,将这条线的两端各绑在固定的点上(这两个点就当作是椭圆的两个焦点,且距离小于线长);取一支笔,用笔尖将线绷紧,这时候两个点和笔就形成了一个三角形(的两边);然后左右移动笔尖拉着线开始作图,持续地使线绷紧,最后就可以完成一个椭圆的图形了。椭圆是一种圆锥曲线:如果一个平面切截一个圆锥面,且不与它的底面相交,也不与它的底面平行,则圆锥和平面交截线是个椭圆。在代数上说,椭圆是在笛卡尔平面上如下形式的方程所定义的曲线使得
B
2
<
4
A
C
{displaystyle B^{2}<4AC,}
,这里的系数都是实数,并存在定义在椭圆上的点对 (x, y) 的多于一个的解。穿过两焦点并终止于椭圆上的线段 AB 叫做长轴。长轴是通过连接椭圆上的两个点所能获得的最长线段。穿过中心(两焦点的连线的中点)垂直于长轴并且终止于椭圆的线段 CD 叫做短轴。半长轴(图中指示为 a)是长轴的一半:从中心通过一个焦点到椭圆的边缘的线段。类似的,半短轴(图中指示为 b)是短轴的一半。如果两个焦点重合,则这个椭圆是圆;换句话说,圆是离心率为零的椭圆。中心位于原点的椭圆
A
x
2
+
B
x
y
+
C
y
2
=
1
{displaystyle Ax^{2}+Bxy+Cy^{2}=1,}
可以被看作单位圆在关联于对称矩阵
A
′
=
[
A
B
/
2
B
/
2
C
]
=
P
D
P
T
{displaystyle A^{prime }={begin{bmatrix}A&B/2\B/2&Cend{bmatrix}}=PDP^{T},}
的线性映射下的图像,这里的 D 是带有
A
′
{displaystyle A^{prime }}
的特征值的对角矩阵,二者沿着主对角线都是正实数的,而 P 是拥有
A
′
{displaystyle A^{prime }}
的特征向量作为纵列的实数的酉矩阵。椭圆的长短轴分别沿着
A
′
{displaystyle A^{prime }}
的两个特征向量的方向,而两个与之对应的特征值分别是半长轴和半短轴的长度的平方的倒数。椭圆可以通过对一个圆的所有点的 x 坐标乘以一个常数而不改变 y 坐标来生成。椭圆的形状可以用叫做椭圆的离心率的一个数来表达,习惯上指示为
ε
{displaystyle varepsilon ,}
。离心率是小于 1 大于等于 0 的实数。离心率 0 表示着两个焦点重合而这个椭圆是圆。对于有半长轴 a 和半短轴 b 的椭圆,离心率是离心率越大,a 与 b 的比率就越大,因此椭圆被更加拉长。半焦距c 等于从中心到任一焦点的距离,则距离 c 叫做椭圆的线性离心率。在两个焦点间的距离是 2aε。中心位于点
(
h
,
k
)
{displaystyle (h,k)}
的主轴平行于 x 轴的椭圆由如下方程指定这个椭圆可以参数化表达为这里的
t
{displaystyle t}
可以限制于区间
−
π
≤
t
≤
π
{displaystyle -pi leq tleq pi ,!}
。如果
h
=
0
{displaystyle h=0}
且
k
=
0
{displaystyle k=0}
(就是说,如果中心是原点(0,0)),则这个参数方程揭示了两个方向相互垂直的简谐运动(表现为具有周期性的简谐波)合成了闭合的椭圆形周期性运动(表现为轨迹是椭圆)。用极坐标可表达为这里的
ε
{displaystyle varepsilon }
是椭圆的离心率;
ψ
{displaystyle psi }
是
C
B
¯
{displaystyle {overline {CB}}}
与
C
P
¯
{displaystyle {overline {CP}}}
的夹角有一个焦点在原点的椭圆的极坐标方程是这里的
θ
{displaystyle theta }
是
F
1
B
¯
{displaystyle {overline {F_{1}B}}}
与
F
1
P
¯
{displaystyle {overline {F_{1}P}}}
的夹角椭圆的半正焦弦(通常指示为
ℓ
{displaystyle ell ,!}
),是从椭圆的一个焦点到椭圆自身,沿着垂直主轴的直线测量的距离。它有关于
a
{displaystyle a,!}
和
b
{displaystyle b,!}
(椭圆的半轴),通过公式
a
ℓ
=
b
2
{displaystyle aell =b^{2},!}
或者如果使用离心率的话
ℓ
=
a
⋅
(
1
−
ε
2
)
{displaystyle ell =acdot (1-varepsilon ^{2}),!}
。在极坐标中,一个焦点在原点而另一个焦点在负 x 轴上的椭圆给出自方程椭圆可以被看作是圆的投影:在与水平面有角度 φ 的平面上的圆垂直投影到水平面上给出离心率 sin φ 的椭圆,假定 φ 不是 90°。椭圆所包围的面积是
π
a
b
{displaystyle pi ab,}
,这里的
a
{displaystyle a,}
,和
b
{displaystyle b,}
,
是半长轴和半短轴。在圆的情况下
a
=
b
{displaystyle a=b,}
,表达式简化为
π
a
2
{displaystyle pi a^{2},}
。
椭圆的周长是
4
a
E
(
c
a
)
{displaystyle 4aE({frac {c}{a}})}
,这里的函数
E
{displaystyle E,}
是第二类完全椭圆积分。周长为:
C
=
4
a
∫
0
π
2
1
−
(
c
a
)
2
sin
2
θ
d
θ
{displaystyle C=4aint _{0}^{frac {pi }{2}}{sqrt {1-left({frac {c}{a}}right)^{2}sin ^{2}theta }} {rm {d}}theta !}
或者
C
=
4
a
∫
0
1
1
−
(
c
a
)
2
t
2
1
−
t
2
d
t
.
{displaystyle C=4aint _{0}^{1}{frac {sqrt {1-left({frac {c}{a}}right)^{2}t^{2}}}{sqrt {1-t^{2}}}} {rm {d}}t.!}精确的无穷级数为:或:拉马努金给出一个更为接近的式子:它还可以写为:还有一条近似很高的公式:假设(注意所有假设只是为了导出椭圆方程时比较简便)动点为
P
(
x
,
y
)
{displaystyle P(x,y),}
,两个定点为
F
1
(
−
c
,
0
)
{displaystyle F_{1}(-c,0),}
和
F
2
(
c
,
0
)
{displaystyle F_{2}(c,0),}
,则根据定义,动点
P
{displaystyle P}
的轨迹方程满足(定义式):用两点的距离公式可得:
|
P
F
1
|
=
(
x
+
c
)
2
+
y
2
{displaystyle |PF_{1}|={sqrt {(x+c)^{2}+y^{2}}},}
,
|
P
F
2
|
=
(
x
−
c
)
2
+
y
2
{displaystyle |PF_{2}|={sqrt {(x-c)^{2}+y^{2}}},}
,代入定义式中,得:整理上式,并化简,得:当
a
>
c
{displaystyle a>c,}
时,并设
a
2
−
c
2
=
b
2
{displaystyle a^{2}-c^{2}=b^{2},}
,则①式可以进一步化简:因为
a
2
b
2
>
0
{displaystyle a^{2}b^{2}>0,}
,将②式两边同除以
a
2
b
2
{displaystyle a^{2}b^{2},}
,可得:则该方程即动点
P
{displaystyle P}
的轨迹方程,即椭圆的方程。这个形式也是椭圆的标准方程。对于平面上任意椭圆
A
x
2
+
2
B
x
y
+
C
y
2
+
D
x
+
E
y
+
F
=
0
{displaystyle Ax^{2}+2Bxy+Cy^{2}+Dx+Ey+F=0,}
,我们总可以将之转化为的形式。具体步骤为,将后式的各乘积乘方项展开,根据与前式对应项系数相等的法则便可求得u,v,f的值。其中,
(
u
,
v
)
{displaystyle (u,v),}
便是该椭圆的中心(f=0)。若将带入式中便可得到平移前的椭圆。若
B
≠
0
{displaystyle Bneq 0}
,则表示椭圆的长短轴与坐标系的坐标轴并不平行或垂直,即发生了旋转。设旋转的角度为
φ
{displaystyle displaystyle varphi }
,则有若将带入式中便可得到旋转前的椭圆。有了椭圆渐开线的导数我们可以计算它的长度,其中
E
(
t
,
a
2
−
b
2
a
)
{displaystyle Eleft(t,{frac {sqrt {a^{2}-b^{2}}}{a}}right),}
是第二类完全椭圆积分。
相关
- 中风复健中风康复是一个患者通过治疗重获日常生活技能、重返有意义生活的过程。对于绝大多数患者,康复涉及到多个学科专业,需要由具备各种技能的健康专家组成医疗小组共同协作,包含护理
- 缓激肽结构 / ECOD缓激肽(英语:Bradykinin)是引起血管扩张的一种肽,因此导致血压降低。一类名叫ACE抑制药的用于降血压的药物会增加缓激肽的浓度(通过抑制其降解)进而降低血压。缓激肽是
- 传感器传感器(英语:Sensor)是用于侦测环境中所生事件或变化,并将此消息发送出至其他电子设备(如中央处理器)的设备,通常由敏感组件和转换组件组成。传感器是一种物理设备或生物器官,能够探
- 深部静脉栓塞深静脉血栓是在深静脉形成的血栓,常形成于下肢或骨盆部位深处的静脉。有时也形成于上肢的静脉(这被称为Paget-Schrötter综合症(英语:Paget–Schroetter disease))。近期接受外科
- 莫达非尼莫达非尼(英文名Modafinil)是一种觉醒促进剂(英语:Wakefulness-promoting agent),被用于对发作性嗜睡病、轮班工作睡眠紊乱以及与阻塞性睡眠呼吸暂停相关的白天过度嗜睡(英语:Excess
- 来苏糖来苏糖是一种戊醛糖,在自然界罕见。例如,细菌糖脂质的成分就含有来苏糖。果聚糖:菊粉 · 果聚糖β2→6甘露聚糖:低聚木糖:半乳聚糖:
- 颈椎颈椎(cervical vertebrae)是脊椎的第一节。人类的颈椎位于颈部区域,一共有7块颈椎骨。第一节颈椎有一个特别的名称:寰椎(Atlas),取自希腊神话中背负着地球的泰坦巨神阿特拉斯。马的
- 盎格鲁-撒克逊语古英语(古英语:Ænglisc,英语:Old English)或盎格鲁-撒克逊语(英语:Anglo-Saxon)是指从449年到1066年间在对应于今天英格兰和苏格兰东南部的人说的英语。古英语属于西日耳曼语,和古弗
- 低钠血症低血钠症(英语:Hyponatremia)是人体内血液中的钠含量过低时,所引起的临床病征。低血钠定义为血中钠离子浓度低于135 mmol/L(135 mEq/L),若低于120 mEql/L,则为重度低血钠症。在临床
- 后期重轰炸期后期重轰炸期,又称晚期重轰炸,是指约于41亿年前至38亿年前,即于地球地质年代中的冥古宙及太古宙前后,推断在月球上发生不成比例的大量小行星撞击的事件,在地球、水星、金星及火星